Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aus Mikroskopie wird Nanoskopie

11.04.2002


Max-Planck-Forscher führen die Lichtmikroskopie in neue Dimensionen

Wegen der Wellennatur des Lichts und der damit verbundenen Beugungsgrenze kann man Strukturen, die feiner sind als einen halben Mikrometer, mit optischen Mikroskopen nicht mehr erkennen. So steht es zumindest in jedem Lehrbuch der Optik und auch in einführenden Lehrbüchern der Zellbiologie. Marcus Dyba und Stefan Hell vom Göttinger Max-Planck-Institut für biophysikalische Chemie berichten jetzt, dass sie diese Beugungsgrenze in einem ausgeklügelten optischen Aufbau bis in die zuvor kaum vorstellbare Größenordnung von wenigen Dutzend Nanometern überwinden konnten (Physical Review Letters, 22. April 2002). Sie kombinierten dazu zwei von Hell bereits früher erfundene Mikroskopieformen - die so genannte Fluoreszenzlöschung durch stimulierte Emission (STED) und die 4Pi-konfokale Mikroskopie - zu einem "STED-4Pi-Mikroskop". Diese neue Form der Lichtmikroskopie stößt erstmals das Tor in die Nanometerskala auf und hat das Potential völlig neue Einblicke in das Innere von Zellen zu eröffnen. Doch die STED-4Pi-Mikroskopie ist nicht nur für die biomedizinischen Forschung vielversprechend, sondern könnte auch für die Mikrolithographie und optische Datenspeicherung von Bedeutung sein.

Im Laufe des Physikunterrichts lernt jeder, dass man mit einem Lichtmikroskop Details kleiner als die Wellenlänge des Lichts nicht sehen kann. Demnach werden gleichartige Objekte, deren Abstand weniger als ein Viertel Mikrometer beträgt, im Bild verwischt - egal, wie perfekt das Mikroskop ist. Den Grund dafür hat der Physiker Ernst Abbe am Ende des 19. Jahrhunderts herausgefunden: Licht breitet sich als Welle aus und die Beugung erlaubt nicht, es auf einen kleineren Fleck als ein Drittel seiner Wellenlänge zu fokussieren. Die prinzipielle Natur dieses Problems führte zur Entwicklung des Elektronenmikroskops und in jüngerer Zeit des Rastertunnel- und Rasterkraftmikroskops. Diese Mikroskope sind äußerst leistungsstark und verfügen mittlerweile über eine molekulare Auflösung. Doch sie haben einen entscheidenden Nachteil - sie machen kleinste Details zumeist nur auf der Oberfläche von Proben sichtbar. Lichtmikroskope sind daher in der biomedizinischen Forschung unverzichtbar, denn nur sie liefern dreidimensionale Bilder aus lebenden Zellen und können sogar helfen, biochemische Vorgänge im Innern der Zelle zu entschlüsseln.

Daher hat sich die Arbeitsgruppe ‚Hochauflösende Optische Mikroskopie’ um Stefan Hell am Max-Planck-Institut für biophysikalische Chemie in Göttingen zum Ziel gesetzt, nach Möglichkeiten zur Überwindung der Beugungsgrenze zu suchen - und zwar für die Fluoreszenzmikroskopie. Fluoreszenz spielt in der Biologie eine wichtige Rolle, weil man Zellkomponenten gezielt mit Farbstoffmolekülen markieren und nach ihrer Anregung mit Licht in der Zelle beobachten kann. Bereits vor zwei Jahren zeigten die Max-Planck-Forscher, dass man mit Hilfe des aus der Laserphysik bekannten Phänomens der stimulierten Emission den fokalen Fleck eines Fluoreszenzmikroskops bis um das Fünffache verkleinern kann. Dabei werden die Farbstoffmoleküle, kurz nachdem sie mit einem (grünen) Lichtpuls angeregt wurden, von einem darauffolgenden stimulierenden (roten) Lichtpuls wieder abgeregt (engl.: Stimulated emission deletion, STED). Der abregende Puls wird ringförmig um den Anregungsfokus angeordnet, so dass die Moleküle in der Mitte des Rings vom Abregen verschont bleiben und das übrig gebliebene Fluoreszenzlicht somit aus einem viel schärferen Fleck stammt. Damit gelang es zum ersten Mal, die Beugungsgrenze in der Fluoreszenzmikroskopie zu überwinden.

"Abb. 1: Funktionsprinzip des STED-4Pi-Mikroskops: Die Interferenz der beiden roten Lichtpulse in einem gemeinsamen Fokuspunkt und die ausgeprägte, gesättigte Abregung der Fluoreszenz durch STED schnürt den fluoreszierenden Fleck entlang der optischen Achse (Z) ein. Der Fokus wird dadurch zu einem schmalen Diskus von nur 30-40 Nanometer Durchmesser, nur gut einem Zwanzigstel der Wellenlänge des in diesem Experiment benutzten Lichts (750 Nanometer). " "Grafik: Max-Planck-Institut für biophysikalische Chemie"

Unabhängig von der STED-Mikroskopie haben die Max-Planck-Forscher auch das so genannte 4Pi-konfokale Mikroskop konzipiert und gebaut. In diesem Verfahren werden zwei hochauflösende Objektive tête à tête auf denselben Punkt gerichtet, und zwar so, dass das beleuchtende Licht in einem gemeinsamen Fokus interferiert. Mit diesem Trick konnten sie die Auflösung eines Fluoreszenzmikroskops entlang der optischen Achse (Z) verdrei- bis versiebenfachen.

Marcus Dyba und Stefan Hell ist es nun gelungen, durch das synergetische Verbinden der beiden Mikroskopie-Prinzipien die axiale Auflösung eines Fluoreszenz-Mikroskops um mehr als das Fünfzehnfache zu steigern und damit erstmals in den Bereich von einigen Dutzend Nanometern vorzustoßen - ein Erfolg, der für ein Lichtmikroskop, das mit konventionellen Objektiven und fokussiertem Licht arbeitet, bisher kaum vorstellbar war. In dem neuen "STED-4Pi-Mikroskop" werden Farbstoffmoleküle - wie bei einem ‚normalen’ STED-Mikroskop - mit kurzwelligen grünen Laserpulsen angeregt, und mit rotverschobenen Laserpulsen durch stimulierte Emission wieder abgeregt. Der Unterschied besteht jedoch darin, dass hier der stimulierende Strahl dem Fokuspunkt (s. Abb. 1) über zwei gegeneinander gerichtete Objektive zugeführt wird - wie bei einem 4Pi-Mikroskop.

Die Forscher benutzten ihr STED-4Pi-Mikroskop, um bei einem membrangefärbten Bakterium (bacillus megaterium) in wässriger Umgebung Details sichtbar zu machen, die bisher mit fokussierender Fluoreszenzmikroskopie verborgen geblieben sind.

"Abb. 2: Aufnahme des Bakteriums bacillus megaterium (Ausschnitt). Das Bild ist entlang der optischen Achse (Z) und in eine lateral Richtung (X) aufgenommen. Die Membranen des Mikroorganismus sind als 30-35 Nanometer scharfe Linien zu erkennen; in einem herkömmlichen, konfokalen Mikroskop würden sie als ca. 800 Nanometer breite Streifen erscheinen. " "Grafik: Max-Planck-Institut für biophysikalische Chemie "

Um die Auflösung in der Fokalebene (X,Y) in gleicher Weise zu schärfen, planen die Wissenschaftler, in kurzer zeitlicher Abfolge zum Interferenzmuster ringförmige rote Pulse einzustrahlen, die den Lichtfleck-Diskus zu einem fast runden "Ball" von 30-40 Nanometer Durchmesser verengen. Gleichzeitig arbeiten sie daran, das Funktionsprinzip ihres Experiments auch in ein kompaktes Laser-Rastermikroskop zu integrieren, mit dem man zum Beispiel Prozesse an Zellmembranen beobachten kann. Doch das Prinzip der "STED-4Pi-Mikroskopie" könnte in Zukunft auch in der Lithographie - zur Herstellung von integrierten Schaltkreisen - und in der optischen Datenspeicherung von großer Bedeutung sein, da auch dort nach Methoden gesucht wird, sich bei der fortschreitenden Miniaturisierung nun die Nanometerskala mit sichtbarem Licht zu erschließen.

Dr. Bernd Wirsing | Presseinformation

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Sauber ohne Chemie und Kraft
27.05.2020 | Technische Universität Dresden

nachricht Mit neuen Verfahren zu bakterienfreien Werkstoffen und keimfreien Lebensmitteln
23.04.2020 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: Innovative Sensornetze aus Satelliten

In Würzburg werden vier Kleinst-Satelliten auf ihren Start vorbereitet. Sie sollen sich in einer Formation bewegen und weltweit erstmals ihre dreidimensionale Anordnung im Orbit selbstständig kontrollieren.

Wenn ein Gegenstand wie der Planet Erde komplett ohne tote Winkel erfasst werden soll, muss man ihn aus verschiedenen Richtungen ansehen und die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen

29.05.2020 | Biowissenschaften Chemie

Wald im Wandel

29.05.2020 | Agrar- Forstwissenschaften

Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems

29.05.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics