Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zuverlässige Fügeverbindungen

12.12.2000


Lasergestützte Fügeverfahren, die zuverlässige Verbindungen zwischen Siliziumsubstraten schaffen, könnten in der Mikrosystemtechnik an die Stelle der derzeit gebräuchlichen Verwendung von Klebstoffen treten. Damit
beim Erhitzen und Erstarren des spröden Materials keine Risse entstehen, müssen solche Verfahren in allen Einzelheiten überwacht und gesteuert werden. Die Deutsche Forschungsgemeinschaft fördert dazu am Lehrstuhl für Fertigungstechnologie von Prof. Dr. Manfred Geiger das Forschungsprojekt "Grundlagenuntersuchungen zum Laserstrahlfügen von Silizium".

Lasergestützte Fügeverfahren sind in vielen Bereichen der Mikrosystemtechnik von Bedeutung. Beispielsweise werden mit Diodenlasern Kunststoffgehäuse für Kfz-Elektronikkomponenten verschweißt. Außerdem können die Leads elektronischer Bauteile auf metallischen Leiterbahnen mit Laserstrahlung gefügt werden. Forschungsarbeiten zu dieser Thematik werden innerhalb des Sonderforschungsbereiches 356 an der Universität Erlangen-Nürnberg durchgeführt.


Schneller als Klebetechniken

Für die Mikrosystemtechnik, speziell für die Optoelektronik, sind jedoch auch Fügeverbindungen zwischen Siliziumsubstraten von großem Interesse. So werden derzeit bei der Ankopplung von Faserarrays auf Siliziumbasis an optische Siliziumchips oder bei der Montage von Siliziumlinsen Klebestoffe verwendet. Der Einsatz lasergestützter Fügeverfahren verspricht hierbei sowohl die Fügezeit zu reduzieren als auch die Zuverlässigkeit zu erhöhen.

Ziel des Forschungsvorhabens am Lehrstuhl für Fertigungstechnologie ist die Erarbeitung der Grundlagen der Laserstrahlmaterialbearbeitung von einkristallinem Silizium mit Nd:YAG-Laserstrahlung. Dafür sollen zunächst die beim Aufschmelzen und Erstarren auftretenden Geometrieänderungen für verschiedene Laserparameter simuliert werden. Aus den berechneten Temperatur- und Spannungsfeldern können Rückschlüsse auf die Rissentstehung gezogen werden. Zur Kontrolle der FEM-Berechnungen (Finite-Elemente-Methode) werden entsprechende experimentelle Untersuchungen durchgeführt.

Den zweiten Schwerpunkt des Projektes stellen die Fügeverfahren Laserstrahllöten und Laserstrahlschweißen dar. Beim Laserstrahlfügen von Silizium können durch die thermische Belastung Risse im spröden Grundwerkstoff entstehen. Mit FEM-Simulationen werden die Temperatur- und Spannungsfelder während des Fügeprozesses und danach ermittelt. Daraus sollen Informationen über den Ort und den Zeitpunkt der Rissbildung gewonnen werden. Anschließend erfolgt ein Vergleich der Ergebnisse mit den Resultaten experimenteller Untersuchungen. Der Einsatz eines flexiblen Versuchsaufbaus mit jeweils einer gepulsten und einer cw-Nd:YAG-Laserstrahlquelle ermöglicht eine gezielte Temperaturführung, durch die die Entstehung von Rissen vermieden werden soll, um zuverlässige Fügeverbindungen zu erreichen.

* Kontakt:
Prof. Dr.-Ing. Dr.-Ing. E.h. mult. Dr. h.c. Manfred Geiger, Dipl.-Ing. Stefan Kaufmann
Lehrstuhl für Fertigungstechnologie, Egerlandstraße 11, 91058 Erlangen
Tel.: 09131/85 -27140, Fax: 09131/930142
E-Mail: kaufmann@lft.uni-erlangen.de

Gertraud Pickel | idw

Weitere Berichte zu: Fügeverbindung Fügeverfahren Laserstrahlfügen

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Wie bioökonomisch optimierte Ressourcen- und Energiekreisläufe bei der Produktion nachhaltiger Lebensmittel helfen
14.02.2020 | Technische Universität Chemnitz

nachricht Von der Natur für die Creme-Dose: neues Verfahren aus dem LIKAT auf der Basis von Zuckerrohr
31.01.2020 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics