Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optisches Getriebe

05.02.2001


Der Femtosekunden-Kammgenerator revolutioniert die optische Messtechnik

Von einem Gang in den anderen wechseln - was beim Auto längst schnell und einfach funktioniert, war bei der Übersetzung von Wellenlängen bisher ein mühsamer Weg mit vielen Zwischenschritten. Ein neues Gerät, das Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig entwickelt haben, schafft diese Schwierigkeiten aus der Welt. Es beruht auf der Eigenschaft von Femtosekundenlasern, extrem kurze, aber sehr breitbandige Lichtpulse auszusenden. Damit können die Welten, die beispielsweise zwischen Mikrowellen- und optischer Strahlung liegen, in einem einzigen Schritt überbrückt werden. Mit dem neuen Femtosekunden-Kammgenerator rückt auch die Entwicklung neuartiger Atomuhren auf der Basis optischer Standards ein großes Stück näher.

"Hier haben sie nicht aufgeräumt" - das ist der erste Eindruck beim Betreten des Labors. Der Eindruck täuscht. Denn all die kleinen Spiegel, die scheinbar wahllos auf einem Messtisch angeordnet sind, erfüllen äußerst präzise Aufgaben: "Dieser Resonator hält Licht quasi gefangen", erklärt Dr. Jörn Stenger, der das Gerät mit entwickelt hat. "Er wirft es hin und her und verstärkt es dabei ständig. Am Ende kommt sehr intensives und gerichtetes Licht heraus, ein Laserstrahl." Doch anders als beispielsweise ein Laserpointer sendet der Femtosekundenlaser kein einfarbiges Licht, sondern sehr viele Farben gleichzeitig in Form von sehr kurzen Pulsen aus. "Unser Laser erzeugt alle nur denkbaren Frequenzen bzw. Wellenlängen - auch weit über den optisch sichtbaren Bereich hinaus", sagt Stenger. Das Licht wandert auf seinem Weg durch die Apparatur durch eine spezielle, neuartige Mikrostrukturfaser, die das Frequenzspektrum noch einmal verbreitert, so dass es alle Regenbogenfarben enthält und hell weiß erscheint - nicht gerade das, was man von einem Laser gewohnt ist. So wird das Gerät zu einem universellen Strahlungs-Lieferanten. Millionen von Frequenzen kommen aus ihm heraus - und zwar schön gleichmäßig geordnet. Die Abstände zwischen all diesen Frequenzen sind exakt gleich groß. Betrachtet man das Ganze auf einem Diagramm, dann erweckt es den Eindruck eines Kamms mit "Zacken" aus vielen einzelnen Frequenzen.

Die gleichmäßigen Abstände machen den Femtosekunden-Kammgenerator zum universellen Übersetzer: Man vergleicht die Frequenz eines beliebigen Lasers mit der Frequenz einer Kammzacke. Dann braucht man nur noch den Abstand zu einer anderen Kammzacke zu messen und hat mit Leichtigkeit die Größenordnungen überbrückt. "Dafür brauchten wir bisher eine komplizierte Frequenzmesskette mit vielen Zwischenoszillatoren, die den ganzen Keller füllen", sagt Stenger. Arbeiten, für die bisher fünf Personen nötig waren, kann nun ein einziger Wissenschaftler erledigen. Somit senkt der Femtosekundenkammgenerator den Aufwand bei allen Frequenzmessungen drastisch: zum Beispiel, wenn es darum geht, eine Frequenz mit dem nationalen Frequenznormal, der Caesium-Atomuhr der PTB, zu vergleichen. "Solche Vergleiche mit Caesium-Genauigkeit braucht man vielleicht nicht im täglichen Leben", schränkt Stenger ein. "Aber für die Grundlagenforscher sind sie äußerst interessant." Erst kürzlich haben sie hier beide PTB-Kandidaten für die Atomuhr der Zukunft auf Herz und Nieren überprüft: das Calcium- und das Ytterbium-Frequenznormal. Die beiden stehen für den Versuch, in Zukunft die Einheiten der Sekunde und der Frequenz aus Schwingungen von Atomen (bei Calcium) oder Ionen (bei Ytterbium) abzuleiten, die nicht mehr wie bei der jetzigen Caesium-Atomuhr im Mikrowellenbereich, sondern im sichtbaren Bereich liegen.

Eine solche optische Uhr hätte den großen Vorteil, dass sie den Sekundentakt mit sehr viel größerer Genauigkeit vorgeben kann. Eine Schwierigkeit dabei wird mit dem neuen Gerät praktisch bedeutungslos: Die optischen Frequenzen müssen erst wieder in den Bereich kleinerer Frequenzen zurückgeführt werden, die beispielsweise zur Regelung vieler elektronischer Geräte benötigt werden. "Wir haben jetzt ein optisches Getriebe", sagt Stenger. Das Fahrzeug dazu - um bei diesem Bild zu bleiben - muss allerdings noch weiter entwickelt werden. Aber in einigen Jahren könnte es soweit sein: Das Zeitalter der "optischen Atomuhren" beginnt. Technische Anwendungen, die auf genaue und stabile "Zeitzeichen" angewiesen sind - wie das GPS (Global Positioning System) oder verschiedenste Untersuchungen in der Grundlagenforschung -, werden davon profitieren.


Bild:
Die Strahlung des Femtosekunden-Kammgenerators überdeckt große Teile des optischen Spektrums. Es erscheint im Bild zwar kontinuierlich, besteht aber aus einer großen Zahl dicht benachbarter Spektrallinien mit genau bekannten Frequenzen.
(Das farbige Bild kann in elektronischer Form bei der Presse- und Öffentlichkeitsarbeit der PTB bestellt werden: E-Mail: presse@ptb.de).

Weitere Informationen:
Dr. Jörn Stenger, Telefon (0531) 592-4429, E-Mail: Joern.Stenger@ptb.de
PTB-Projekt "Optische Frequenzmessung"
Physikalisch-Technische Bundesanstalt (PTB)

Dipl.-Journ. Erika Schow | idw

Weitere Berichte zu: Caesium-Atomuhr Femtosekunden-Kammgenerator Frequenz Laser

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Wie bioökonomisch optimierte Ressourcen- und Energiekreisläufe bei der Produktion nachhaltiger Lebensmittel helfen
14.02.2020 | Technische Universität Chemnitz

nachricht Von der Natur für die Creme-Dose: neues Verfahren aus dem LIKAT auf der Basis von Zuckerrohr
31.01.2020 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste Untersuchungsergebnisse zum "Sensations-Meteoritenfall" von Flensburg

17.02.2020 | Geowissenschaften

Lichtpulse bewegen Spins von Atom zu Atom

17.02.2020 | Physik Astronomie

Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen

17.02.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics