Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschung im Nanokosmos - Lehrstuhl entwickelt neue Methode zur Herstellung kleinster Röhrchen

16.03.2006


Nano. Kaum ein anderer Begriff ist in der wissenschaftlichen Medienberichterstattung häufiger zu finden. Nano ist innovativ. Nano ist in. Den eigentliche finanziellen und materiellen Aufwand, der in dieser Forschung steckt, kennen nur wenige. Einer von ihnen ist Prof. Dr. Ulrich vom Institut für Verfahrenstechnik (TVT) der Martin-Luther-Universität Halle-Wittenberg. Seit gut zwei Jahren forschen er und seine Kollegen im Bereich der Nanowissenschaften an Kristallstrukturen. Sein Ziel ist es, kleinste Röhrchen zu generieren, über deren Zusammensetzung und Eigenschaften man selbst bestimmen kann.




Ulrichs Vorhaben baut auf Erkenntnissen, auf die das Team durch Zufall gestoßen ist. "Bei mehreren unserer Reaktionsversuche mit Hydraten, das sind Kristalle, die in ihrem Konstrukt Wasser in das Kristallgitter eingelagert haben, ist ein Filz aus vielen Nadeln entstanden. Damals war es unser Anliegen, diese Nadeln zu beseitigen", blickt Ulrich zurück. Irgendwann ist man auf die Idee gekommen, den Filz genauer zu untersuchen. Dabei haben die Wissenschaftler festgestellt, dass es sich um kleinste Röhrchen handelt, Nanoröhrchen.



Stabil, belastbar und dennoch winzig

Diese sogenannten Nanotubes werden in der Wissenschaft aus anderen Materialien und über andere Wege schon seit einigen Jahren hergestellt. Typisch sind die Durchmesser der Röhren von weniger als 100 Nanometern. Ihre Einsatzgebiete sehen Experten hauptsächlich in der Elektrotechnik, der Kunststoffindustrie und der Pharmazie. Größere Bedeutung erlangten in den letzten Jahren vor allem Nanoröhrchen auf Kohlenstoffbasis. Sie gelten als stabil und belastbar, doch haben sie einen entscheidenden Nachteil. Wissenschaftler sind mit diesem Stoff materialgebunden und müssen mit dessen Eigenarten leben.

"Wir wollen Nanoröhrchen entwickeln, bei denen wir selbst entscheiden können, aus welchem Material sie bestehen", führt Ulrich ein. Das Team hat sich für die Stoffgruppe der Solvate entschieden. "Solvate umfassen alle kristallinen Stoffe, die in ihrem Kristallgitter Flüssigkeiten einlagern können." Um das Ausgangsmaterial anzupassen, wird durch die Neuanpassung der Experimentierumgebung, beispielweise durch die Veränderung der Temperatur oder der Luftfeuchtigkeit, eine Abgabe oder Zunahme der Flüssigkeitsanteile in der Kristallstruktur hervorgerufen. "So lässt sich unter anderem der Solvatzustand beeinflussen", fährt Ulrich fort.

Im Team kamen nun viele Fragen auf: Wie kann man diese Röhrchen weiter verkleinern? Wie kann man gezielt die Eigenschaften bei der Kristallisation beeinflussen und zuverlässig steuern? Funktioniert die Herstellung auch mit anderen Kristallstrukturen? Kann man die Größe des Durchmessers gezielt vorherbestimmen? "Diese Fragen wollen wir klären. Wir müssen erst einmal begreifen, welche Prozesse man wie steuern kann. Die Hauptarbeit liegt da noch vor uns."

Neue Möglichkeiten für Wissenschaft und Wirtschaft

Ziel ist es, den Durchmesser der Tubes von derzeit 300 Nanometer auf 100 Nanometer zu verkleinern. "Außerdem wollen wir versuchen, die Röhrchen zu verschließen", erklärt Ulrich weiter zum Projekt. Die daraus entstehenden Container, sogenannte Nanocontainer, könnten vor allem in der Pharmazeutische Anwendung interessant sein. Durch Impfungen könnten z. B. diese mit dem Impfstoff gefüllten Container mit zeitlicher Verzögerung langsam in den menschlichen Körper abgegeben werden. Die Röhre an sich würde sich ebenfalls zeitlich verzögert auflösen. Dazu müssen Röhrchen entwickelt werden, die perfekt auf den menschlichen Körper abgestimmt sind und entsprechend reagieren. "Der Impfstoff dürfte nicht zu schnell abgegeben werden, um Vergiftungserscheinungen zu vermeiden. Geht der Stoff zu langsam ins Blut über, wäre er wirkungslos", weiß Ulrich.
Er sieht viele weitere Einsatzmöglichkeiten für Nanoröhrchen auf Solvatbasis. Das sei seiner Ansicht nach wie bei den Kohlenstoffröhrchen nicht nur auf pharmazeutische Entwicklungen beschränkt.

Problematisch sind vor allem die Analyseverfahren. "Röhrchen herzustellen, ist die eine Sache. Zu beweisen, dass man wirklich zu einem bestimmten Ergebnis gekommen ist und dass es sich um reproduzierbare Vorgänge handelt, ist eine andere." Diese Analytik sei teuer und aufwändig. Um sie dennoch durchführen zu können, arbeitet das Team um Ulrich mit anderen Projekten der Universität zusammen. "Wir können auf die Technik anderer Fachbereiche zugreifen. Das spart Zeit und Geld." Letzteres wird im übrigen vom Land Sachsen-Anhalt ihm Rahmen der Exzellenzinitiative zur Verfügung gestellt. 2008 sollen dann erste Ergebnisse vorliegen.

Weitere Informationen:
Prof. Dr.-Ing. habil. Joachim Ulrich
Martin-Luther-Universität Halle-Wittenberg
FB Ingenieurwissenschaften, Institut für Verfahrenstechnik/TVT
Tel.: 0345 55-28400
Fax.: 0345 55-27358
E-Mail: joachim.ulrich@iw.uni-halle.de

Dr. Margarete Wein | idw
Weitere Informationen:
http://www.iw.uni-halle.de

Weitere Berichte zu: Durchmesser Kristallstruktur Nano Nanometer Nanoröhrchen Röhrchen

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten
18.07.2018 | BIAS - Bremer Institut für angewandte Strahltechnik GmbH

nachricht Neues Verfahren verbessert Haltbarkeit der Beschichtung auf Werkzeugen
12.07.2018 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Europaweit erste Patientin mit neuem Hybridgerät zur Strahlentherapie behandelt

19.07.2018 | Medizintechnik

Waldrand oder mittendrin: Das Erbgut von Mausmakis unterscheidet sich je nach Lebensraum

19.07.2018 | Biowissenschaften Chemie

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics