Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Höchstleistungslaser für Medizin und Naturwissenschaften

08.03.2006


Neue Nachwuchsforschergruppe am Institut für Optik und Quantenelektronik der Universität Jena



Ein Tumor im Gehirn lässt sich nur sehr schwer behandeln, denn ihn umgibt höchst sensibles Gewebe. Die Behandlungslösung der Zukunft könnte ein Protonenstrahl sein, der von einem Laser erzeugt wird. Diese Protonen, also die Elementarteilchen des Atomkerns, können dann den Tumor zielgenau zerstören, ohne das umliegende Hirn zu beschädigen. An der Entwicklung und am Einsatz des dafür benötigten Lasers arbeitet eine neue Nachwuchsforschergruppe um Dr. Malte Kaluza am Institut für Optik und Quantenelektronik (IOQ) der Friedrich-Schiller-Universität Jena.



Etwa 1999 entstand an diesem Institut die Idee für einen Höchstleistungslaser mit einer Leistung im Petawatt-Bereich. Das entspricht 1.000 Billionen Watt, für deren Erzeugung sonst eine Million Kernkraftwerke notwendig wären. In den ersten Jahren konnte das Team am IOQ nachweisen, dass der Aufbau eines solchen Lasersystems prinzipiell möglich ist. Darauf aufbauend haben sie einen komplett diodengepumpten Festkörperlaser der Ein-Petawatt-Klasse, genannt POLARIS (Petawatt Optical Laser Amplifier for Radiation Intensive Experiments), entwickelt.

Dieses System wird nach seiner Fertigstellung Laserpulse erzeugen, die mit einer Intensität von 10 hoch 21 Watt/Quadrat-cm auf ein Ziel fokussiert werden können. Was das bedeutet, beschreibt Dr. Kaluza mit einem Vergleich: Nimmt man das gesamte auf die Erdoberfläche fallende Sonnenlicht und konzentriert es auf einem Fleck von einem Zehntel Millimeter Durchmesser, dann erreicht man etwa die angestrebte Intensität.

Dr. Kaluza nennt weitere Anforderungen an den Laser. Er soll eine extrem kurze Pulsdauer von 150 Femtosekunden haben. Die Pulsenergie soll 150 Joule erreichen. Und der Laser soll mit einer Pulsfolge von einem Schuss pro zehn Sekunden abgefeuert werden können. Von diesen Parametern ist die neue Forschergruppe noch etwas entfernt. "In einem ersten Schritt wollen wir alle 10 bis 30 Sekunden einen Puls erzeugen", sagt Dr. Kaluza. Bereits das wäre für solche Pulsenergien weltweit ein Spitzenwert. Die Leistung des Lasers soll Ende des Jahres 0,1 Petawatt erreichen. "Schon damit können wir erste Experimente zur Elektronen- und Ionenbeschleunigung durchführen, um die Physik der Wechselwirkungen zu studieren", erklärt der 31-jährige Wissenschaftler, der die neue Nachwuchsforschergruppe seit Jahresbeginn leitet. Zuvor hat der aus Gießen stammende Physiker an der Technischen Universität München, am Max-Planck-Institut für Quantenoptik sowie am Imperial College London mit ähnlichen Lasersystemen geforscht.

Die potenziellen Anwendungsmöglichkeiten eines Höchstleistungslasers sind vielfältig. So könnte er in Zukunft monoenergetische Protonen- oder Ionenstrahlen für die oben beschriebene Tumortherapie liefern, sagt Dr. Kaluza. Die Eigenschaften eines solchen Protonenstrahls müssen dafür so präzise eingestellt und kontrolliert werden, dass nur das kranke Tumorgewebe zerstört wird. "POLARIS ist ein sehr aussichtsreicher Kandidat für solche Anwendungen", weiß Dr. Kaluza. Auf der Technologie von POLARIS aufbauende Lasersysteme wären zudem - im Vergleich zu kilometergroßen Beschleunigeranlagen - kompakt genug, um sie auch in Krankenhäusern betreiben zu können. Eine weitere Anwendungsmöglichkeit wäre die Herstellung von radioaktiven Nukliden für die Medizin mit einer genau definierten Zerfallsdauer für die Diagnose.

Mit POLARIS können aber auch extrem kurze Röntgenpulse oder ein Röntgenlaser erzeugt werden. Neben der Realisierung einer extrem intensiven Röntgenquelle für lithographische Techniken wäre auch die Analyse chemischer Reaktionen möglich. Diese laufen so schnell ab, dass sie mit herkömmlichen Methoden nicht vollständig erfasst werden können. "Das wäre etwa so, als würde man versuchen, bei einem vorbeifahrenden Formel-1-Rennwagen die Aufschrift auf den Reifen mit dem bloßen Auge zu lesen", sagt Malte Kaluza. "Teilt man unseren Laser in zwei Strahlen, könnte mit der einen Hälfte z. B. eine Reaktion ausgelöst werden. Mit der anderen Hälfte erzeugen wir dann einen ultra-kurzen Röntgenblitz, mit dem wir dann in mehreren aufeinanderfolgenden Aufnahmen den Ablauf der chemischen Reaktion in Einzelschritten sichtbar machen können", beschreibt er eine weitere mögliche Anwendung von POLARIS.

Die Arbeit der von Dr. Kaluza geleiteten Nachwuchsforschergruppe, der 16 Mitarbeiter angehören, wird vom Bundesforschungsministerium gefördert. Bis Ende 2010 stellt das Ministerium dafür fünf Millionen Euro zur Verfügung.

Kontakt:
Dr. Malte Kaluza
Institut für Optik und Quantenelektronik der Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947280
E-Mail: kaluza[at]ioq.uni-jena.de

Axel Burchardt | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Berichte zu: Höchstleistungslaser Laser Lasersystem POLARIS Quantenelektronik

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten
18.07.2018 | BIAS - Bremer Institut für angewandte Strahltechnik GmbH

nachricht Neues Verfahren verbessert Haltbarkeit der Beschichtung auf Werkzeugen
12.07.2018 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics