Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Poly-Parylen - Werkstoff der Zukunft?

16.11.2004


FH3 -Programm des BMBF fördert Gerhard Franz und Stefan Sotier von der FH München bei der Entwicklung einer Beschichtungsanlage


Fotopapiere können gegen Fingerabdrücke unempfindlich gemacht werden, Gummioberflächen fühlen sich teflonartig an und Metalle werden im medizinischen Einsatz gegen Körperflüssigkeiten und Injektionslösungen isoliert. Erreicht wird dies durch Oberflächenveredelungen mit organischen Filmen - einer Technik, die immer bedeutender wird.

Das unterstreicht das Bundesministerium für Bildung und Forschung (BMBF) mit seiner Förderung eines Projekts der FH München und des Unternehmens Plasma Parylene Coating Services (PPCS) durch das FH3-Programm. Das in diesem Projekt zu untersuchende Parylen soll als Beschichtungsmaterial für Stents oder Spiralen und Operationsnadeln Verwendung finden. Stents (metallische, zylindrische Hohlkörper) und Spiralen werden eingesetzt, um z. B. nach einer Thrombose geschwächtes Adergewebe zu stabilisieren. Dazu muss der Körper an die richtige Stelle geschoben werden, wobei möglichst wenig Reibung entstehen darf. Das wird mit einer Parylenbeschichtung erreicht. Der Schubdraht wird anschließend an einer Sollbruchstelle durch einen Stromstoß erhitzt und auf diese Weise vom Stent getrennt. Operationsnadeln für die Gehirnchirurgie dienen unter anderem zur Hitzeverödung von Tumoren. Dazu wird die Nadel bis knapp vor ihre Spitze mit hochisolierendem Parylen beschichtet, dann wird ein Stromstoß ausgelöst, der zu einem Hitzeschock führt.


Die Anforderungen insbesondere im medizinischen Bereich werden dabei immer höher. Die diesem Projekt zugrundeliegende Herausforderung ist eine Erhöhung der Durchschlagsfestigkeit, um das gleiche Isolationsverhalten bei geringerer Filmdicke zu erzielen, was insbesondere für die Erhöhung der Präzision in der Gehirnchirurgie von Bedeutung ist. Aber auch im Halbleiterbereich werden Verbesserungen für Dielektrika möglich.

Dazu soll das von der Firma PPCS in Rosenheim entwickelte Verfahren der chemischen Dampfabscheidung durch Entwicklung eines plasmaunterstützten, reaktiven Abscheideverfahren während des vom BMBF geförderten, zwei Jahre dauernden Projekts erweitert und möglicherweise ersetzt werden. Die Abscheidebedingungen werden variiert und mittels Plasmadiagnostik genau kontrolliert. Das Team besteht aus zwei Studenten, die ihre Abschlussarbeiten im Rahmen des Masterstudiums der Mikro- und Nanotechnik durchführen, einem Diplomingenieur sowie mehreren fortgeschrittenen Studenten, die hier ihre Semesterarbeit absolvieren. Geleitet wird das Projekt von den Professoren Stefan Sotier, dessen Domäne die Oberflächentechnologie und Vakuumphysik ist, und Gerhard Franz, der seinen Forschungsschwerpunkt in der Physik der Niedertemperaturplasmen hat.

Da für den medizinischen Bereich die Anforderungen sehr hoch sind, sind als Spin-off dieser Prozess-/Produktentwicklung Ergebnisse im "Low-tech"-Bereich denkbar und wahrscheinlich: z. B. zur Verwendung als fettabweisende Beschichtung im Bereich der Textilfasertechnologie, der Papierveredelung oder von Gebrauchsgegenständen.

Christina Kaufmann | idw
Weitere Informationen:
http://www.fh-muenchen.de

Weitere Berichte zu: BMBF Mikro- und Nanotechnik Parylen

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Phänomenologisches Berechnungskonzept verkürzt das Auslegen von Spritzgussformteilen
13.08.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Nachweis von Mikroplastik im Wasser: Fraunhofer CSP entwickelte smarte Filteranlagen
02.08.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics