Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jenaer Physiker bauen Super-Laser der Zukunft

12.06.2001

Einen der stärksten Laser der Welt bauen Physiker im Institut für Optik und Quantenelektronik der Universität Jena. Ein Petawatt Leistung, das sind eine Billion Kilowatt, soll die nach einem technologisch vollständig neuen Konzept konstruierte Maschine erzeugen - zehnmal mehr als die stärksten Forschungs-Laser derzeit bringen.

Prof. Roland Sauerbrey und sein Team stoßen damit das Tor in neue physikalische Dimensionen auf: Sie wollen chemische Elemente umwandeln und somit quasi alte Alchimistenträume wirklich machen, astrophysikalische Ereignisse, etwa die Implosion von Gestirnen, im Labor en miniature nachbilden oder in der relativistischen Plasmaphysik aus Licht buchstäblich Materie erzeugen.

Die Jenaer Wissenschaftler haben gemeinsam mit ihren Partnern aus der traditionellen Optik-Region Jena zwei der drei technologischen Grundsatzprobleme für den neuen Laser schon gelöst - und damit bereits eine ganze Serie von so genannten spin-off-Effekten, also unmittelbar praktisch umsetzbaren Erkenntnissen, erzielt. "Thüringer Firmen in der Optik-Industrie sichern sich damit einen spezifischen Vorsprung vor der internationalen Konkurrenz", weiß Sauerbrey. Das Erfurter Wissenschaftsministerium fördert - nicht zuletzt aus diesem Grund - das Jenaer Projekt mit einer millionenschweren Basisfinanzierung.

Klein, kompakt und - mit einem Quantenwirkungsgrad von 90 Prozent - äußerst effizient wird das neue Gerät die bisherigen Generationen von Lasern alt aussehen lassen. "Wir haben uns von Anfang an von der üblicherweise sehr aufwändigen Blitzlampentechnik verabschiedet und deshalb unseren Laser auf der Basis optimierter Pumpdioden konstruiert", verrät Sauerbrey das Geheimnis der Verstärkereinheit, also des Herzstücks, für den Petawatt-Laser.

Im Endausbau werden darin 4.500 Laserdioden parallel eingesetzt. Sie stellen binnen zweier Millisekunden einen Energievorrat bereit, den dann ein speziell präparierter Laserimpuls regelrecht "abräumt" - und somit monströse Potenzen erreicht. Jede einzelne dieser Dioden liefert etwa 400 Millijoule Energie, also nahezu 100.000 Mal mehr als Dioden wie in handelsüblichen CD-Spielern. Die Jenoptik AG hat diese weltweit stärksten Laserdioden für Sauerbreys Projekt konstruiert und fertigt sie inzwischen in Serie für den Weltmarkt.

Wie bisherige Laser auch, "lebt" der neue Petawatt-Laser von der Qualität seiner optischen Bauteile. Nun haben Chemiker um Dr. Doris Ehrt im Otto-Schott-Institut der Uni Jena Spezialgläser aus Ytterbium-Ionen-dotiertem Fluorid-Phosphat entwickelt, die extrem hohe Energiemengen speichern können. "Wir haben bereits die im Endausbau erforderlichen Gläser mit 70 mm Durchmesser, die die erforderliche Pumpenergie von einem Kilojoule speichern können", rechnet Sauerbrey vor. Auch hier steht eine Serienfertigung - nicht nur für Hochleistungslaser - in Aussicht, vielleicht sogar in einer neuen Firma.

Sauerbreys Mitarbeiter, Dr. Joachim Hein und Dr. Thomas Töpfer, haben bereits ein eigenes Unternehmen gegründet, um das gewonnene Know-how zu vermarkten. Diodentechnologie und Lasergläser werden demnächst auf der weltweit bedeutendsten Fachmesse in München erstmals vorgestellt. Auch andere Thüringer Mittelständler wie die Hellma-Optik Jena oder die Mellinger Layertec GmbH profitieren von dem Know-how-Transfer aus dem Großprojekt.

Eine besonders harte Nuss haben die Jenaer Wissenschaftler allerdings noch zu knacken: Herkömmliche Beschichtungen für optische Oberflächen halten die gewaltigen Energiedichten nicht aus. "Wir brauchen dafür neue, hochreine Materialien mit extrem hoher Oberflächenqualität", schildert Sauerbrey. Spätestens in vier Jahren wollen er und seine Mitstreiter aber soweit sein. "Als wir 1998 mit dem Projekt begonnen haben, hielten viele Experten es für technologisch vollkommen utopisch und nicht finanzierbar", erinnert er sich. Nun scheint der Durchbruch zum Greifen nahe.

Wenn die Entwicklungssprünge in der Lasertechnologie ihr Tempo beibehalten, rechnet der Jenaer Physiker in etwa zehn Jahren mit einer Serienfertigung des Super-Lasers für industrielle Zwecke. Feldstärken von bis zu 10 hoch 23 Watt/cm2, Drücke bis zu einigen Terabar und eine Materiebeschleunigung bis zu 10 hoch 22 g werden dann erreichbar sein.

Das mögliche Anwendungsspektrum klingt heute noch wie Science fiction: Per Kerntransmutation bei chemischen Elementen, also durch Eingriffe in die atomare Teilchenstruktur, ließen sich neue Radioisotope für die medizinische Strahlendiagnostik und -therapie erzeugen, hochgefährliche Giftstoffe wie Atommüll könnte man buchstäblich "verbrennen". Zukunftsmusik, vorerst.

Wenn sie erst Realität geworden sein wird, möchten Roland Sauerbrey und sein Wissenschaftler-Team aber schon weiter sein. "Jetzt sprengen wir erst einmal die Petawatt-Grenze", so der Jenaer Physiker. "Mit diesem neuen technologischen Ansatz erscheinen uns aber Leistungsdichten bis zu 100 Petawatt durchaus als realistisches Ziel."

Ansprechpartner:
Prof. Dr. Roland Sauerbrey
Institut für Optik und Quantenelektronik der Friedrich-Schiller-Universität
Tel.: 03641/947200, Fax: 947202
E-Mail: sauerbrey@ioq.uni-jena.de

Dr. Wolfgang Hirsch
Referat Öffentlichkeitsarbeit
Fürstengraben 1
D-07743 Jena
Telefon: 03641 · 931030
Telefax: 03641 · 931032
E-Mail: roe@uni-jena.de

Dr. Wolfgang Hirsch | idw

Weitere Berichte zu: Endausbau Laser Physik Sauerbrey Super-Laser

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Neue Methode führt zehnmal schneller zum Corona-Testergebnis
07.07.2020 | Universität Bielefeld

nachricht Neues Verfahren ermöglicht Lithiumabbau in Deutschland
01.07.2020 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics