Intelligente Füge-Werkzeuge mit integriertem Mikrocontroller

Mit Fingerspitzengefühl: Selbst empfindliche Teile handhabt das servoelektrische Greifmodul problemlos.

Auch bei Maschinen ist mittlerweile „Intelligenz“ gefragt: Maschinen,
Roboter und Werkzeuge sollen immer genauer arbeiten und dabei flexibel bleiben. Regelt sich ein intelligentes Werkzeug auch noch selbst, entlastet dies die Maschinensteuerung und verringert die Reaktionszeiten.

Die Mikroelektronik macht es möglich: Aus tumben Roboterwerkzeugen, die nur die Befehle der Maschinensteuerung abarbeiten, werden intelligente Einheiten, die sich selbstständig überwachen und regeln. Was früher ganze Schaltschränke füllte, passt heute auf kleinsten Raum. Sensoren am Werkzeug erfassen auftretende Kräfte und andere Einflussgrößen direkt vor Ort und geben sie an die Werkzeugsteuerung und den Regelkreis des Gesamtsystems weiter. Durch die unmittelbare Prozessüberwachung sind schnelle Korrekturen möglich, Fehler lassen sich weitgehend vermeiden. Regelt sich das Werkzeug über einen integrierten Mikrocontroller auch noch selbst, entlastet dies die Maschinensteuerung und die extrem kurzen Wege verringern die Reaktionszeiten weiter: Das erhöht den Takt und verbessert gleichzeitig die Prozessqualität. Wissenschaftler des Fraunhofer IPA haben solche Füge-Werkzeuge entwickelt. Die intelligenten, kompakten Werkzeuge sind flexibel einsetzbar, verkürzen die Umrüstzeiten und genügen höchsten Ansprüchen an Verfügbarkeit und Genauigkeit. Integrierte Sensoren und eine dezentrale Datenverarbeitung „on board“ überwachen und regeln den Prozess. Einheitliche mechanische und elektrische Schnittstellen ermöglichen ein rasches Umrüsten im „plug and run“-Verfahren.

„Wir arbeiten an einem modularen Elektronik-Baukastensystem für Roboterwerkzeuge, die einen schnellen, sicheren und qualitativ hochwertigen Prozessablauf erlauben“, berichtet Projektleiter Christof Weis. „Unser Ziel ist es, Verfügbarkeit und Prozesssicherheit der Gesamtanlage durch die Integration dezentraler Elektronikmodule zur Prozessüberwachung und -regelung in das Werkzeug deutlich zu erhöhen.“ Die autarke Prozessüberwachung und -regelung der Werkzeuge arbeitet unabhängig von der Roboter- oder Anlagensteuerung. Bisher haben Weis und sein Team intelligente Werkzeuge zum Dosieren, Schrauben und Greifen entwickelt und erprobt.

Das Dosiermodul basiert auf einem Schneckenextruder-Ventil und ermöglicht eine hochpräzise Klebstoffapplikation. Die integrierte Sensorik überwacht laufend die Klebstoffraupen- bzw. Klebstoffpunkt-Geometrie durch ein Lasertriangulationsverfahren und mittels Ultraschall in regelmäßigen Intervallen den Abstand des Dosiermoduls zur Werkstückoberfläche. Die gesamte Sensordatenauswertung, die Prozessregelung sowie das Initialisieren der Aktoren finden unabhängig von der Robotersteuerung direkt auf dem Werkzeug statt. Am Schraubmodul messen hochauflösende Sensoren ständig Drehmoment und Drehwinkel. Auch hier erfolgt die Auswertung der Sensorinformationen lokal und der Prozess wird durch die dezentrale Controllereinheit präzise überwacht und geregelt. Das Werkzeug lässt sich einfach bedienen, führt selbst komplexe Schraubprozesse mit größter Präzision durch und kann mit einem Gerätehalter auch an manuellen Arbeitsplätzen eingesetzt werden. Auf dem Greifmodul überwachen taktile Sensorfelder ortsaufgelöst die Greifkraft und stellen über die Kontaktflächen die Position der Bauteile in den Greiferfingern fest. Das Forscherteam um Weis arbeitet im Moment an einer intelligenten Sensordatenauswertung durch neuronale Netzstrukturen für dieses Werkzeug. „Am Ende soll der Mikor-Controller die Sensordaten auswerten, in seinem Regelkreis mit den Solldaten vergleichen, die relative Bauteilposition im Greiferfinger errechnen und die veränderten Bahnplanungsparameter für den Fügevorgang an die Robotersteuerung weitergeben“, erklärt Christof Weis. Dieser Vorgang findet während das Handhabens des Bauteils, nach dem Aufnehmen und vor dem Fügen statt.

Alle Werkzeuge sind sehr kompakt aus Elektronik- und Sensormodulen aufgebaut, die eine autarke Prozessregelung erlauben. Durch die Verwendung robuster Mikrocontroller sind die Elektronikbausteine einfach zu programmieren und im Bertrieb resistent gegen Softwarefehler. Neben der möglichen detaillierten Prozessdokumentation können auch Werkzeugzustände im Betrieb diagnostiziert werden, um ein eventuelles Versagen frühzeitig zu erkennen. Durch den modularen Aufbau von Hard- und Software lassen sich nahezu alle Fügewerkzeuge einfach, schnell und kostengünstig mit einem System zur Prozessüberwachung und -regelung ausrüsten. „Die dadurch erreichte Prozesssicherheit und -qualität erhöht die Wirtschaftlichkeit der Gesamtanlage nachhaltig“, stellt Weis fest.

Ansprechpartner:

Fraunhofer-Institut für Produktionstechnik
und Automatisierung IPA
Dipl.-Ing. Kai Wegener
Telefon: +49(0)711/970-1304,
E-Mail: kai.wegener@ipa.fraunhofer.de

Dr.-Ing. Johannes Wößner
Telefon: +49(0)711/970-1585
E-Mail: johannes.woessner@ipa.fraunhofer.de

Media Contact

Michaela Neuner idw

Weitere Informationen:

http://www.ipa.fraunhofer.de

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer