Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrospiegel ersetzen Löcher

11.04.2001


Mit einem Spezialmikroskop ist es möglich, Ebenen im Raum getrennt abzubilden. Diesen Effekt nutzt ein Messgerät, das Oberflächen berührungslos abtastet. Statt mit einer teuren Lochblende arbeitet es mit einem
mechatronischen Serienbauteil aus Videoprojektoren.

Das räumliche Abbild von einer lebenden Zelle entsteht dank einer raffinierten optischen Einrichtung. Aufgenommen wird es von einem Konfokalmikroskop, dessen feiner und fokussierter Lichtstrahl die Zelle Punkt für Punkt und Ebene für Ebene abtastet. Winzige Löcher in einer rotierende Scheibe blenden den Strahl aus der Lichtquelle aus. Dank dieser Blende wird es möglich, dass das Mikroskop nur jeweils eine Ebene abbildet - davor und dahinter sieht es schwarz.

Ganz ähnlich, doch ohne Lochscheiben, arbeitet ein optisches Messgerät, das als Prototyp im Fraunhofer-Institut für Produktionstechnologie IPT gebaut wurde. So wie ein Konfokalmikroskop Ebenen im Raum unterscheiden kann, misst das Gerät die Höhe und den Ort kleinster Objekte. Ingenieur Frank Bitte erklärt, wie das Gerät ohne »echte Löcher« auskommt: »Wir haben die teuren Nipkow-Scheiben, die nur in kleinen Stückzahlen gefertigt werden, durch ein billigeres Massenprodukt ersetzt: das Digital Micromirror DeviceTM DMD.« Seit längerem werden solche elektronischen Bauteile dazu eingesetzt, um Videos digital zu projizieren. Im Messgerät des IPT trägt der DMD auf der Größe eines Daumennagels fast eine halbe Million bewegliche Mikrospiegel. Jeder einzelne kann unabhängig von den anderen elektrisch angesteuert und verkippt werden. So lassen sich viele feine Lichtstrahlen einzeln in die gewünschten Richtungen reflektieren.

Neben dem geringeren Preis bietet der DMD weitere Vorteile, wie Bitte erläutert: »Je nach gewünschter Bildqualität, die ein Konfokal-mikroskop liefern soll, rastert der Lichtstrahl die Objekte mit verschiedenen Mustern und Geschwindigkeiten. Dazu müssten andere Nipkow-Scheiben eingesetzt werden, worauf wegen des Aufwands meist jedoch verzichtet wird. Flexibler ist der DMD, der sich einfach, weil elektronisch anpassen lässt. Darüber hinaus treten mit ihm Störungen durch Vibration oder Reibung wie bei der rotierenden Scheibe nicht auf.«

Das Messprinzip wurde vom Unternehmen GFM patentiert, mit dem das Fraunhofer-Institut in einem von der EU geförderten Projekt kooperiert. Das Gerät selbst stellt seine Leistungsfähigkeit auf der Hannover Messe unter Beweis. In Halle 17 am Stand C/D 50 tastet es berührungslos Prüfkörper mit kleinsten Stufen ab und kann deren Ort und Höhe auf rund ein tausendstel Millimeter genau ermitteln. Ein mögliches Einsatzgebiet: Leiterbahnen auf mikroelektronischen Schaltungen messen und prüfen.

Ansprechpartner:
Dipl.-Ing. Frank Bitte
Telefon: 02 41/89 04-2 59, Fax: 02 41/89 04-1 98, bitte@ipt.fhg.de

Weitere Informationen finden Sie im WWW:

Dr. Johannes Ehrlenspiel | idw

Weitere Berichte zu: DMD Lichtstrahl Messgerät Mikrospiegel Nipkow-Scheiben

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Kühlsystem ohne schädliche Kältemittel
01.08.2019 | Fraunhofer IPM

nachricht Batterieproduktion in Rekordgeschwindigkeit
30.07.2019 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics