Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Modellierung des Verhaltens von Blasen bei der Wasseraufbereitung mit Ultraschall

14.10.2003


Mit einem neu entwickelten mathematischen Modell lässt sich das kollektive Verhalten von Kavitationsblasen in Flüssigkeiten unter Einwirkung starker akustischer Felder simulieren. Es könnte in einer Vielzahl von Anwendungen zum Einsatz kommen, deren Spektrum von der Arzneimittelverabreichung mit Ultraschall bis zur Ultraschallchemie reicht. Besonders gut eignet es sich allerdings für die Wasseraufbereitung.


Viele der üblichen Verfahren zur Wasserreinigung, beispielsweise das Abstreifen in Kühltürmen oder die Anwendung von elektrischem Strom, können ausgesprochen energieintensiv sein. Andere herkömmliche Techniken, bei denen eine verstärkte Ausflockung der dispergierten Schadstoffe stattfindet, erfordern den Einsatz chemischer Additive und folglich eine Nachverarbeitung. Im Gegensatz zu diesen Techniken ist Ultraschall ein kostengünstigeres und saubereres Hilfsmittel zur Trinkwasserherstellung oder Abwasseraufbereitung, weshalb dieses Verfahren weite Verbreitung gefunden hat.

Die Erzeugung von akustischen Feldern hoher Intensität in Flüssigkeiten führt zu Kavitationseffekten. Darunter versteht man das Entstehen, Wachsen und Oszillieren von Blasen, von denen die Schadstoffe mitgenommen werden. Diese Art der Schadstoffentfernung kann durch mechanische Wirkungen wie z.B. das Aufbrechen der Zellwände von Bakterien erreicht werden, aber auch auf chemischem Wege wie etwa durch Erzeugung freier Radikale zur Aromatenoxidation. Bislang wurden die meisten Ultraschall-Reinigungsgeräte aufgrund von Erfahrungswerten dimensioniert, also ohne Berücksichtigung der Effekte wichtiger Parameter wie etwa der Verteilung und des dynamischen Verhaltens der Kavitationsblasen.


Mit Hilfe eines von der EU finanzierten Projekts konnten jetzt erstmals grundlegende Einblicke in das kollektive Verhalten solcher Kavitationsblasen gewonnen werden. Dabei wurden geeignete mathematische Modelle entwickelt, die die Musterbildung in großen Blasenclustern exakt beschreiben. Diese Modelle eignen sich auch zur Simulation, Steuerung und Optimierung von Blasenclustern, die sich in einer mit Schall beaufschlagten Flüssigkeit bilden.

Die neuartigen mathematischen Modelle und die schnellen numerischen Algorithmen basieren auf den Bewegungen einzelner Blasen unter großen Druckschwankungen und eignen sich ausgezeichnet zur Prädiktion des dynamischen Verhaltens ganzer Blasensysteme. Die neuen numerischen Codes liefern Berechnungen sowohl zu monodispersen als auch polydispersen Blasenclustern, bei denen es sich um Wolken handelt, in denen die Blasen identische bzw. unterschiedliche Anfangsradien aufweisen.

Im Zuge der weiteren Forschungsarbeit werden Aspekte im Hinblick auf nichtsphärische Blasenbewegungen und auf eine exakte Modellierung der Wechselwirkungen zwischen einigen Blasen in Bezug auf ihre Koaleszenz und ihren Zerfall untersucht.

Kontaktangaben

Prof. Iskander Akhatov
Institute of Mechanics
Russian Academy of Sciences (Ufa Branch)
12 Karl Marx Street
450000 Ufa, Russland
Tel./Fax: +7-3472-230878
Email: iskander@anrb.ru

| ctm
Weitere Informationen:
http://www.anrb.ru

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Verkalkte Zähne retten
19.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht Uhrenbestandteile aus Diamant
18.06.2018 | Schweizerischer Nationalfonds SNF

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics