Raman-Spektroskopie schafft mehr Zuverlässigkeit in der Mikroelektronik

Da alle Substanzen charakteristische spektroskopische Eigenschaften haben, anhand derer sie eindeutig spezifiziert werden können, ermöglicht die Mikro-Raman-Mikroskopie eine einzigartige Analyse und Identifizierung von Chemikalien und liefert zudem eine räumliche Auflösung. Im Projekt STREAM wurde ein System entwickelt, mit dem diese Technik so verfeinert wurde, dass sie zum Messen lokaler Materialbeanspruchungen in Halbleiterbauelementen und damit zur Steigerung der Zuverlässigkeit des Endprodukts eingesetzt werden kann.

Mechanische Spannungen stellen ein erhebliches Problem für die Verarbeitung und Zuverlässigkeit elektronischer Mikrosysteme dar. Solche örtlich begrenzten mechanischen Spannungen treten in fast allen Phasen der Verarbeitung und Gehäuseunterbringung dieser Bauelemente auf. Diese Materialbeanspruchungen können die einwandfreie Funktion der Chips beeinträchtigen und sollten daher möglichst niedrig gehalten werden. Die Mikro-Raman-Spektroskopie (µRS) ist eine zerstörungsfreie Technik, bei der die Wechselwirkungen zwischen monochromatischem Laserlicht, das über ein Mikroskop fokussiert wird, und dem Kristallgitter (Phononen) oder molekularen Schwingungen ausgewertet werden. Die räumliche Auflösung der meisten gängigen Instrumente beträgt allerdings im besten Fall rund 1mm. Im STREAM-Projekt wurde ein System entwickelt, mit dem diese Technik verfeinert wurde.

Im Rahmen dieses Projekts sollte die Empfindlichkeit des µRS-Verfahrens für örtliche Materialspannungen im Kristallgitter zur Verarbeitung von Mikroelektronik-Bauelementen genutzt werden. Die steigende Packungsdichte und Miniaturisierung der mikroelektronischen Bauelemente erforderten allerdings analytische Techniken mit einer räumlichen Auflösung, die noch größer ist als diejenige der normalerweise eingesetzten µRS-Systeme. Um eine höhere räumliche Auflösung zu erreichen, wurde das konventionelle System mit einer automatischen Fokussierung ausgestattet, die für einen konstanten Brennpunkt von etwa 0,8 Mikron (bei Laserlicht mit einer Wellenlänge von 458 nm, Objektiv 100x) sorgt. Diese räumliche Auflösung kann außerdem durch Verwendung eines ölumspülten Objektivs auf 0,3 Mikron gesteigert werden. Diese Verbesserungen machen es möglich, die µRS-Technik zur Analyse von Materialbeanspruchungen einzusetzen, die in der Mikroelektronik-Produktion auftreten, wobei die erhaltenen Daten mit denen vergleichbar sind, die mit anderen Verfahren wie z.B. CBED (Convergent-Beam Electron Diffraction, Elektronenbeugung im konvergenten Strahlenbündel) und dem Finite-Elemente-Modell (FEM) gewonnen werden können.

Da die Mikroelektronik ein sehr schnell wachsendes Gebiet der Technik ist, gibt es hier auch einen wachsenden Bedarf an Möglichkeiten zur Bewertung der erreichbaren Zuverlässigkeit. Mit den beschriebenen Verbesserungen könnte sich das µRS-Verfahren als exzellentes Hilfsmittel für die Verarbeitung von Halbleiterchips und mikroelektronischen Systemen von noch höherer Zuverlässigkeit und Qualität eignen.

Kontakt

Ingrid de Wolf (Dr)

IMECvzw
Head of Microsystems Reliability Group
Kapeldreef 75
3001
Leuven
BELGIUM
Tel: +32-16-281463
Fax: +32-16-281097
E-Mail: ingrid.dewolf@imec.be

Media Contact

Cordis Technologie-Marktplatz

Weitere Informationen:

http://www.imec.be

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer