Mikrofluidik-Chip hilft dem Bierbrauer

Am Institut für Spektrochemie und Angewandte Spektroskopie (ISAS) entwickelte Mikrofluidik-Chips helfen dem Braumeister und stellen kontinuierlich den Alkoholgehalt der Würze und damit den Stand der Gärung beim Bierbrauen fest. Gemeinsam mit der Siemens AG wird ein „Lab-on-a-chip“ entwickelt, welches aus haardünnen Kapillaren in einem Kunststoffchip bestehen und die mit wenigen Mikrolitern Flüssigkeit auskommen.

Die dem Mikrofluidik-Chip zugrunde liegende Idee besteht darin analog zum mikroelektronischen Chip durch Verwendung einer begrenzten Anzahl von Bausteinen einen chemischen Analysechip zu entwickeln. Statt Leiterbahnen, die Elektronen transportieren, gibt es auf diesem Chip fluidische Kanäle, die Ionen in Flüssigkeiten transportieren.

Durch Vernetzung so unterschiedlichen Bausteine, wie Mischer, Reaktionszellen, spezifische und unspezifische Detektoren, Kanäle in denen Stoffbestandteile auf Grund ihrer unterschiedlichen Ladungen oder Affinitäten getrennt werden können, entsteht ein Chip, auf dem die gleichen Prozessschritte durchgeführt werden können, wie sie in einem konventionellen Labor zu finden sind. Auf diese Weise entsteht auf der Fläche einer Checkkarte ein „Lab-on-a-chip“, ein Labor auf einem Chip.

Hierbei wird ausgenutzt, dass unterschiedliche Flüssigkeitsbestandteile in den winzigen Kanälen unterschiedlich schnell wandern und so auf einem Chip getrennt werden können. Aus einem Mikroliter Probe wird hierfür etwa ein Nanoliter entnommen.

Der Trick liegt in der Verwendung elektrokinetische Prozesse (wie Elektroosmose und Elektrophorese), die den Transport der Flüssigkeiten völlig ohne den Einsatz von mechanischen Pumpen ermöglichen. Durch reines Schalten von Spannungen im kV-Bereich werden die Flüssigkeiten auf dem Chip durch die einige 10 Mikrometer (ein millionstel Meter) breiten Kanäle bewegt.

Die Analogie mit den elektronischen Gegenstücken geht aber noch einen Schritt weiter. Die chemischen Analysechips können ebenfalls durch „umprogrammieren“ an unterschiedliche Problemstellungen angepasst werden. In diesem Fall bedeutet die Umprogrammierung neue Reagenzien, die auf dem Chip andere Fluss- und Reaktionsbedingungen erzeugen.

Hergestellt werden diese fluidischen Mikrostrukturen aus Polymeren mit Hilfe von Mikrostrukturierungsverfahren wie dem Heißprägen oder Spritzgießen. Hierbei wird in einem ersten Schritt photolithographisch ein Werkzeug hergestellt, das die gewünschte fluidische Struktur als Negativ ergibt. Im nächsten Schritt kann diese Struktur dann praktisch beliebig oft repliziert werden. Die Elektroden werden auf dem Deckel aufgebracht, der die Gesamtstruktur am Ende abschließt. Diese Produktionstechnik erlaubt selbst die Herstellung komplizierter Fluidik-Chips zu sehr niedrigen Kosten.

Während ein auf der Kapillarelektrophorese basierendes und die Fläche von fast 1 m2 benötigendes Laborgerät rund 50.000 Euro kostet und für eine Analyse je nach Art der Probe zwischen 10 und 60 Minuten benötigt, ist eine Chiplösung nicht nur kleiner, sondern auch deutlich preiswerter und mit wenigen Minuten Analysenzeit auch deutlich schneller.

Damit können sehr schnell hintereinander, direkt am Gärprozeß Proben genommen und analysiert werden, so dass der Braumeister kontinuierlich über den Alkoholgehalt der Würze und damit den Stand der Gärung informiert ist, ohne per Hand öfter Proben nehmen zu müssen.

Ihr erstes Einsatzfeld werden diese Laboratorien auf einem Chip in der Prozess- und Qualitätskontrolle finden. Eingebettet in das elektronische Leitsystem eines chemischen Prozesses, das beispielsweise den Zustand einer Fermentation kontrolliert, erlaubt es die Bestimmung der Zusammensetzung zu jedem Zeitpunkt. Innerhalb weniger Minuten sind die Daten generiert, die eine optimalem Kontrolle und Führung des Prozesses erlauben.

Das wird aber erst der Anfang sein. Solche Systeme versprechen als „Point-of Care“ Instrument auch neue Möglichkeiten in der Medizintechnik. Andere potentielle Einsatzgebiete liegen in der Umwelttechnik, wo eine preiswerte und schnelle Überwachung von Abwässern direkt vor Ort rund um die Uhr möglich wird. Damit erreicht die chemische Analytik auch hier den direkten Anschluss and das moderne Informationszeitalter.

Weitere Informationen: Dr. Jörg Ingo Baumbach, Tel. 0231 / 1392 – 238; Fax 0231 / 1392 – 438; E-Mail: Baumbach@ISAS-Dortmund.DE

Media Contact

Klaus Commer idw

Weitere Informationen:

http://www.isas-dortmund.de

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Der Klang der idealen Beschichtung

Fraunhofer IWS transferiert mit »LAwave« lasergestützte Schallanalyse von Oberflächen in industrielle Praxis. Schallwellen können auf Oberflächen Eigenschaften verraten. Parameter wie Beschichtungsqualität oder Oberflächengüte von Bauteilen lassen sich mit Laser und…

Individuelle Silizium-Chips

… aus Sachsen zur Materialcharakterisierung für gedruckte Elektronik. Substrate für organische Feldeffekttransistoren (OFET) zur Entwicklung von High-Tech-Materialien. Wie leistungsfähig sind neue Materialien? Führt eine Änderung der Eigenschaften zu einer besseren…

Zusätzliche Belastung bei Knochenmarkkrebs

Wie sich Übergewicht und Bewegung auf die Knochengesundheit beim Multiplen Myelom auswirken. Die Deutsche Forschungsgemeinschaft (DFG) fördert ein Forschungsprojekt der Universitätsmedizin Würzburg zur Auswirkung von Fettleibigkeit und mechanischer Belastung auf…

Partner & Förderer