Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Druckholz: Vom ungeliebten Restmaterial zum Edel-Armaturenelement

23.01.2008
An der Professur für Holz- und Faserwerkstofftechnik der TU Dresden wird die Formbarkeit von Furnieren mit Hilfe eines pflanzlichen Sondergewebes optimiert.

In Hanglagen oder an Waldrändern sieht man sie manchmal: schief stehende Bäume, die Wind und Wetter trotzen. Um hier standhalten zu können, haben Nadelbäume eine besondere Strategie. An der druckbelasteten Seite des Baumes und an der Unterseite von Ästen bildet sich das so genannte Druckholz. Die Zellen dieses Gewebes weisen einen vom normalen Holz abweichenden Zellwandbau auf. Weil die Fibrillen der Cellulose - eines der wesentlichen Bauelemente von pflanzlichen Zellen - in Druckholz flacher angeordnet sind, besitzt Druckholz in Faserrichtung eine bis zu zehn Mal größere Dehnbarkeit im Vergleich zu normalem Holz.

Druckholz tritt vor allem im Kronenbereich von Kiefern und bei dicken, bodennahen Fichtenästen an Waldrändern auf. Die Bundeswaldinventur schätzt die Waldrandlänge deutschlandweit auf mehrere hunderttausend Kilometer. Für die krummen Äste und Stämme hat die klassische Holzwirtschaft kaum Verwendung; sie werden wie ein typisches Abfallprodukt allenfalls verbrannt oder gleich im Forst belassen. Wissenschaftler des Instituts für Holz- und Papiertechnik der TU Dresden kamen jedoch auf eine bessere Idee: warum nicht von dem vermeintlichen Nachteil dieses pflanzlichen Sondergewebes profitieren? Ließe sich nicht die große Dehnbarkeit des Holzes für Spezialanwendungen nutzen?

Michael Rosenthal hat sich dieser Herausforderung gestellt. Für seine Promotion, die von der Deutschen Bundesstiftung Umwelt gefördert wird, untersucht er in Zusammenarbeit mit dem Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam/Golm die Verformbarkeit von Druckholz bei verschiedenen Feuchtigkeiten und Temperaturen in Bruchbelastungstests, um künftig eine bessere dreidimensionale Verarbeitung von Furnieren zu entwickeln. Bisher sind der Verformung der Furniere - zum Beispiel für die Herstellung von Armaturenelementen - enge Grenzen gesetzt, was zu einer Verdrängung des natürlichen Rohstoffes Holz als Beschichtungsmaterial für besonders enge Radien führte. Zunehmend besinnen sich jedoch die Möbelindustrie und auch einige Automobilbauer wieder mehr auf die edlen Echtholzoberflächen. Rosenthals Ziel ist es, ein Furnierlagenholz aus sehr dünnen Druckholzfurnieren herzustellen, welches sich besser als alle bisherigen Furniere verformen lässt. Dafür gilt es vor allem, Falten und Risse längs der Holzfasern bei der Verformung durch eine kreuzweise Anordnung der Furnierschichten zu verhindern.

Die einzigartigen Einsatzmöglichkeiten, argumentiert Michael Rosenthal, rechtfertigen den besonderen Verarbeitungsaufwand von Druckholz allemal; zudem sorgt der hohe Anteil an Lignin für eine lebhafte rötliche Färbung des Werkstoffs; nicht nur für die Automobilindustrie ist dieser ästhetische Aspekt natürlich reizvoll.

Informationen für Journalisten: M.Sc. Michael Rosenthal, Tel. 0351 463-38101, E-Mail: michael-rosenthal@web.de oder Prof. Wagenführ, andre.wagenfuehr@tu-dresden.de

Kim-Astrid Magister | idw
Weitere Informationen:
http://www.tu-dresden.de/

Weitere Berichte zu: Dehnbarkeit Druckholz Furnier Sondergewebe Verformung

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Elektrosynthese von Alkoholen energieeffizienter gestalten
18.10.2019 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht TUM Agenda 2030: Kräfte bündeln zur Additiven Fertigung: TUM erforscht digitale Fertigungstechnologie der Zukunft
09.10.2019 | Technische Universität München

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics