Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winzig, aber wertvoll: Internationale Rohstoffexperten treffen sich am HZDR

29.01.2019

Neue Technologien zur Gewinnung feinster Rohstoff-Partikel und die effiziente Wassernutzung in der Aufbereitungstechnik sind die Themen eines internationalen Expertenforums am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) am 30. und 31. Januar 2019. Zu den Teilnehmern zählen Unternehmen aus der Aufbereitungsindustrie, dem Berg- und Anlagenbau sowie Vertreter europäischer Forschungseinrichtungen.

Flotation, auch Schaumflotation genannt, ist eine der wichtigsten Methoden, um aus Erzen wertvolle Rohstoffe zu gewinnen. Jedoch kommen Metalle wie Kupfer, Kobalt oder Seltene Erden in den Lagerstätten oft nur noch in kleinen Teilchen vor – zu klein für gängige Gewinnungsverfahren.


Die Flotation ist ein gängiges Verfahren, um aus Roherz Metalle abzutrennen. Dabei lagern sich die Wertstoffe an Luftblasen an, werden nach oben getragen und dort abgetrennt.

HZDR / 3D Kosmos

Industrie und Wissenschaft suchen deshalb nach neuen Konzepten, mit denen sich auch diese feinsten Rohstoff-Partikel durch industrielle Flotationsprozesse abtrennen lassen. Neben der Feinpartikelflotation ist die nachhaltige Nutzung von Wasser bei der Rohstoff-Aufbereitung weiterer Themenschwerpunkt.

Das Netzwerktreffen mit rund 95 internationalen Rohstoffexperten bietet den Industrievertretern die Möglichkeit, sich mit Wissenschaftlern auszutauschen und offene Fragen direkt an die Forschung zu adressieren.

Ziel ist es, Projektideen und Kooperationsprojekte zu entwickeln. Im Mittelpunkt stehen innovative Technologien, Ausrüstungen und geeignete Reagenzien für die Flotation feinster Wertstoff-Teilchen, denn hier liegt die Zukunft der Rohstoff-Gewinnung.

Was ist Flotation?

Schaumflotation nutzt die unterschiedlichen Oberflächeneigenschaften von Mineralpartikeln. Führt man einer Flüssigkeit mit fein gemahlenen Partikeln Gasblasen zu, haften die Blasen an Teilchen mit hydrophober, das heißt wasserabstoßender Oberfläche. Diese steigen durch die angehängten Luftblasen nach oben und bilden eine Schaumschicht, die abgeschöpft werden kann.

Auf den jeweiligen Wertstoff zugeschnittene Reagenzien sorgen dafür, dass die „richtigen“ Körnchen in den Schaum gelangen. Weltweit werden jährlich – unter Einsatz großer Mengen von Wasser – mehrere Milliarden Tonnen Erze flotiert. Das Verfahren findet zunehmend auch beim Wertstoff-Recycling Anwendung.

EIT RawMaterials, das weltweit größte Konsortium im Rohstoffsektor, veranstaltet das Netzwerktreffen gemeinsam mit dem HZDR.

„Die Wahl des Tagungsortes durch das EIT beweist, dass die Rohstoff-Forschung in Freiberg und Dresden inzwischen auch international wahrgenommen wird“, erklären die Organisatoren Dr. Martin Rudolph vom Helmholtz-Institut Freiberg für Ressourcentechnologie (HIF) und Prof. Kerstin Eckert vom Institut für Fluiddynamik.

Die Wissenschaftler der beiden HZDR-Institute untersuchen unter anderem die Mechanismen und Mikroprozesse bei der Schaumflotation. Durch ein besseres Verständnis der Vorgänge im Flotationstank wollen sie die Grundlage schaffen, um die Rohstoff- und Energieeffizienz der Industrieprozesse zu optimieren.

Das EIT RawMaterials hat die Aufgabe, die Wettbewerbsfähigkeit des europäischen Mineralien-, Metall- und Rohstoffsektors zu stärken und Innovationen aus der Forschung in die Industrie zu bringen.

Der Aufbau des Konsortiums wurde vom HZDR in Kooperation mit der Fraunhofer Gesellschaft koordiniert. Es wird finanziert vom Europäischen Institut für Innovation und Technologie (EIT), einer Einrichtung der Europäischen Union.

_Weitere Informationen:
Prof. Kerstin Eckert
Institut für Fluiddynamik am HZDR
Tel.: +49 351 260-3860 | E-Mail: k.eckert@hzdr.de

Dr. Martin Rudolph
Helmholtz-Institut Freiberg für Ressroucentechnologie am HZDR
Tel.: +49 351 260-4410 | E-Mail: m.rudolph@hzdr.de

_Medienkontakt:
Simon Schmitt | Wissenschaftsredakteur
Tel.: +49 351 260-3400 | E-Mail: s.schmitt@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
Bautzner Landstr. 400, 01328 Dresden | www.hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR entwickelt und betreibt große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
Es ist Mitglied der Helmholtz-Gemeinschaft, hat fünf Standorte (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt knapp 1.200 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Wissenschaftliche Ansprechpartner:

Prof. Kerstin Eckert
Institut für Fluiddynamik am HZDR
Tel.: +49 351 260-3860 | E-Mail: k.eckert@hzdr.de

Dr. Martin Rudolph
Helmholtz-Institut Freiberg für Ressroucentechnologie am HZDR
Tel.: +49 351 260-4410 | E-Mail: m.rudolph@hzdr.de

Weitere Informationen:

https://www.hzdr.de/presse/konferenz_flotation

Simon Schmitt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen
10.10.2019 | Technische Universität Kaiserslautern

nachricht Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“
10.10.2019 | Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR)

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics