Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TU Dresden startet ersten sächsischen Satelliten

17.04.2013
Studierende der TU Dresden entwickeln und bauen den ersten Sächsischen Satelliten, der zwischen dem 19. und 22. April 2013 ins Weltall startet. „SOMP1“ soll Messdaten aus der oberen Atmosphäre im Weltraum liefern. Damit könnten Klimavorhersagen optimiert und zukünftige Missionen besser geplant werden.

Er ist nur 10 x 10 x 10 Zentimeter groß und wiegt knapp ein Kilogramm. Nach fünf Jahren Entwicklungszeit befindet sich der erste Sächsische Satellit in Startposition auf der russischen Trägerrakete „Sojus“ in Baikonur.

Der Picosatellit „SOMP1“ wurde von etwa 100 Studierenden und Doktoranden der TU Dresden der Fachrichtungen Luft- und Raumfahrtechnik, Mechatronik, Energietechnik, Informatik und Physik entwickelt. „SOMP1“ steht für Student Oxygen Measurement Project und soll die Restatmosphäre in der Umgebung des Satelliten messen.

In der vergangenen Woche haben Projektadministrator Dr. Andreas Weber und Systemingenieur Paul Roßmann vor Ort in Baikonur die letzten Funktionstests durchgeführt. Anschließend wurde „SOMP1“ in den „Single Pico Satellite Launcher“ (SPL) eingesetzt, der später im Orbit das kontrollierte Freisetzen des Satelliten ermöglicht. An Bord von Sojus sind fünf weitere Satelliten, die sich gegenseitig nicht beeinflussen dürfen. Zwischen dem 19. und 22. April 2013 soll die Rakete in einen erdnahen Orbit starten. Der erste Startversuch ist für den 19.04.2013 gegen 12 Uhr MESZ geplant.

„Wenn alles planmäßig verläuft, wird ‚SOMP1‘ schon einen Tag später in circa 600 Kilometern Höhe ausgesetzt und automatisch aktiviert“, berichtet Dr. Andreas Weber, der das Projekt im Jahr 2008 als Student mit initiierte und nun koordiniert. „Unser Satellit wird zirka 16 Mal am Tag einen phantastischen Sonnenaufgang erleben. Sobald die Solarzellen genügend elektrische Leistung für die Elektronik liefern und die Batterien aufgeladen sind, werden die Sensoren aktiviert und können für wenige Minuten pro Erdumlauf den atomaren Sauerstoff in der Umgebung messen“, erklärt der Leiter der Arbeitsgruppe Kleinsatelliten und Spin-off Technologien der Fakultät Maschinenwesen der TU Dresden, Dr. Tino Schmiel.

Im Vergleich zur Erde herrscht in der oberen Atmosphäre – der Thermosphäre – in der sich der Satellit befinden wird, nur ein Einhunderttausendstel des Sauerstoffdruckes. In dieser Restatmosphäre soll „SOMP1“ den atomaren Sauerstoff zeit- und ortsabhängig messen. Das ist einerseits besonders wichtig, weil atomarer Sauerstoff der Hauptbestandteil der obersten Einflussschicht auf Atmosphärenmodelle ist und bisher noch nicht ausreichend vor Ort gemessen werden konnte. Bisher widersprechen sich die Modelle der oberen Atmosphäre um zirka 340 Prozent. Das Messergebnis von „SOMP1“ könnte zu genaueren Klimavorhersagen führen. Andererseits ist atomarer Sauerstoff eine große Herausforderung für die Raumfahrtechnik. Denn wenn die aggressiven Sauerstoffatome mit zirka acht Kilometern pro Sekunde auf die Materialien treffen, werden Solarzellen, Sensoren und funktionale Schichten teilweise zerstört.

Die Sensoren an Bord von „SOMP1“ sind eine Weiterentwicklung des Experimentes „FIPEX“ der TU Dresden, das im Jahr 2007 und 2008 auf der Internationalen Raumstation ISS das Verhalten von atomarem Sauerstoff im Weltraum zum ersten Mal gemessen hat. „Bei ‚FIPEX‘ waren die Sensoren noch so groß wie Streichhölzer. Die Sensoren von ‚SOMP1‘ wurden nun soweit verkleinert, dass auch nur noch die Hälfte der elektrischen Leistung benötigt wird. Damit konnten sie überhaupt erst in einem Kleinsatelliten eingesetzt werden“, so Dr. Tino Schmiel.

„‘SOMP1‘ muss mit nicht einmal zwei Watt auskommen. Das ist bedeutend weniger als eine moderne Energiesparlampe verbraucht. Die Solarzellen auf den Außenseiten des würfelförmigen Satelliten aktivieren die Messsensoren und versorgen Bordrechner, Funkgerät und die Ladeeinheit der Batterien mit Strom. Alle Komponenten wurden von den Studierenden und Doktoranden der TU Dresden selbst entworfen, gebaut und getestet. ‚SOMP1‘ war für uns die einzigartige Gelegenheit, theoretische Kenntnisse in einem echten Raumfahrtprojekt anzuwenden. Dass ‚SOMP1‘ der erste Sächsische Satellit ist, der überhaupt ins All geschossen wird, macht mich stolz“, erklärt Paul Roßmann, ehemaliger Student und jetzt Systemingenieur und Doktorand an der Professur für Raumfahrtsysteme der Fakultät Maschinenwesen der TU Dresden.
„Die Studierenden und Doktoranden standen vor der großen Herausforderung, ein System mit geringem Gewicht und niedriger Energieaufnahme zu entwickeln, das ganz nebenbei auch noch absolut wartungsfrei in einer Vakuum-Umgebung mit starken Temperaturschwankungen funktioniert“, erklärt Prof. Dr. Martin Tajmar, Inhaber der Professur für Raumfahrtsysteme. „Das Projekt hat ihnen die einzigartige Möglichkeit geboten, ihr Wissen und ihre Erfahrungen an allen Subsystemen eines Satelliten praxisnah zu erweitern. Das betrifft die Strukturanalyse, Thermalkontrolle, Mikrocontroller-Programmierung und Nachrichtentechnik, genauso wie das Erlernen von Projektmanagement, Öffentlichkeitsarbeit und das interdisziplinäre Arbeiten im Team.“
Während die Mitarbeiter vor Ort in Baikonur waren, führten Jörg Heisig und S.R. Sudarsan die letzten Tests an der Bodenstation in Dresden durch: „Sobald ‚SOMP1‘ am Horizont erscheint, haben wir nur weniger als acht Minuten Zeit, um Telemetriedaten zu erhalten und Kommandos zu senden“, erläutert S.R. Sudarsan. „SOMP1“ sendet mit vier Antennen im 70-cm-Amateurfunkband unter dem Rufzeichen DP0TUD auf der Frequenz 437,485 MHz jede Minute ein Morsesignal. So können sich neben den Studierenden auch Funkamateure aus der ganzen Welt an der Mission beteiligen.
Das Lehr- und Ausbildungsprojekt wurde maßgeblich vom Deutschen Zentrum für Luft- und Raumfahrt finanziert.

Weitere Informationen zu „SOMP1“ haben die Studierenden auf der Homepage der Studentischen Arbeitsgruppe für Raumfahrt in Dresden (STARD) zusammengestellt: www.stard-online.de

Weitere Informationen: Dr.-Ing. Tino Schmiel, Wissenschaftlicher Mitarbeiter der Professur für Raumfahrtsysteme und Leiter der Arbeitsgruppe Kleinsatelliten und Spin-off Technologien, Tel. 0351 463-38287, 0171 9949760, tino.schmiel@tu-dresden.de

Mathias Bäumel | idw
Weitere Informationen:
http://www.tu-dresden.de

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Gemeinsam auf kleinem Raum - Mikrowohnen
19.02.2020 | Technische Universität Berlin

nachricht Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“
12.02.2020 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Im Focus: Charakterisierung von thermischen Schnittstellen für modulare Satelliten

Das Fraunhofer IFAM in Dresden hat ein neues Projekt zur thermischen Charakterisierung von Kupfer/CNT basierten Scheiben für den Einsatz in thermalen Schnittstellen von modularen Satelliten gestartet. Gefördert wird das Projekt „ThermTEST“ für 18 Monate vom Bundesministerium für Wirtschaft und Energie.

Zwischen den Einzelmodulen von modularen Satelliten werden zur Kopplung eine Vielzahl von Schnittstellen benötigt, die nach ihrer Funktion eingeteilt werden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Supercomputer „Hawk“ eingeweiht: Höchstleistungsrechenzentrum der Universität Stuttgart erhält neuen Supercomputer

19.02.2020 | Informationstechnologie

Soziale Netzwerke geben Aufschluss über Dates von Blaumeisen

19.02.2020 | Biowissenschaften Chemie

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics