Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

NEXT ENERGY entwickelt Konzepte für Hausenergie-Managementsysteme

13.09.2012
Die Eigennutzung von Solarstrom wird für Hausbesitzer wirtschaftlich zunehmend attraktiv. Das EWE-Forschungszentrum NEXT ENERGY entwickelt und evaluiert derzeit Konzepte für Hausenergie-Managementsysteme, die mit der Sonne als einzigen Energielieferanten auskommen. Dabei sollen sämtliche thermischen und elektrischen Energieflüsse zwischen Dach und Keller intelligent gesteuert werden. Erste Ergebnisse präsentieren die Oldenburger Forscher vom 24. bis 28. September 2012 auf der weltweit führenden Photovoltaik-Konferenz EU PVSEC in Frankfurt.

Steigende Energiepreise machen die Eigennutzung von Solarstrom für Hausbesitzer wirtschaftlich zunehmend attraktiv. Damit der Ertrag der eigenen Photovoltaik-Anlage jedoch rund um die Uhr verfügbar wird, muss die produzierte Energie zunächst vor Ort gespeichert und ihr Einsatz anschließend ebenso effizient wie intelligent gesteuert werden.

Das EWE-Forschungszentrum NEXT ENERGY entwickelt und evaluiert derzeit Konzepte für entsprechende Hausenergie-Managementsysteme für die dezentrale Energieversorgung auf Wohngebäude-Ebene. Erste Ergebnisse hierzu und zu weiteren Forschungsaktivitäten im Bereich Photovoltaik präsentieren die Oldenburger Wissenschaftler vom 24. bis 28. September 2012 auf der weltweit führenden Photovoltaik-Konferenz EU PVSEC in Frankfurt in Halle 3.1 an Stand E 28.

Aktuell wird über Photovoltaik-Anlagen bereits mehr als vier Prozent des deutschen Stromverbrauchs abgedeckt. „Entgegen der weitläufigen Darstellung hat damit eine äußerst erfolgreiche Markteinführung der Photovoltaik in Deutschland stattgefunden. Diese Entwicklung verdanken wir dem Erneuerbare-Energien-Gesetz (EEG). Bleibt das Ausbautempo konstant, kann Solarstrom bald zu einer tragenden Säule der elektrischen Energieversorgung in Deutschland werden“, ist Dr. Thilo Kilper, Themenfeldleiter im Forschungsbereich Photovoltaik bei NEXT ENERGY, überzeugt.

Um dies realisieren zu können, werde es jedoch in zunehmendem Maße wichtig sein, die Energie der Sonne dezentral speicherfähig zu machen. „Bei der Energieversorgung von Gebäuden werden deshalb Hausenergie-Managementsysteme eine zentrale Rolle spielen. Sie beinhalten neben dezentralen Strom- und Wärmeerzeugern auch elektrische und thermische Zwischenspeicher. Ihre Aufgabe besteht darin, die Energieflüsse zwischen Erzeugern, Speichern, Verbrauchern und dem elektrischen Niederspannungsnetz in Abhängigkeit des aktuellen Angebots an solarer Strahlungsenergie optimal zu regeln.“

Um ein durchdachtes Konzept für Hausenergie-Managementsysteme zu erlangen, ist also interdisziplinäre Forschung erforderlich. Bei NEXT ENERGY sind neben dem Photovoltaik-Bereich auch die Experten aus den Bereichen Energiespeicher und Brennstoffzellen in die Arbeiten eingebunden. So können die Forscher zum Beispiel einen kürzlich eingerichteten Prüfstand zur Simulation von Solarmodulen, Solarmodulsträngen und Solargeneratoren bis zu 30 kW Leistung nutzen. Als Datenbasis stehen selbst erstellte Erzeugerprofile zur Verfügung, die das typische jährliche Einspeiseverhalten einer Photovoltaik-Anlage im Zeitraffermodus darstellen. Generiert wurden diese Profile aus den Betriebsdaten der institutseigenen Photovoltaik-Anlage. Komplettiert wird der Prüfstand durch einen Netzsimulator sowie durch elektronische Lasten zur Simulierung von Verbraucherprofilen.

Die Daten aus den Simulationsreihen geben den Wissenschaftlern Aufschluss über das Zusammenspiel aller Bestandteile des Gesamtsystems. „So können wir zum Beispiel der Frage nachgehen, ob die Photovoltaik-Anlage und der Zwischenspeicher – bezogen auf die Erfordernisse der Verbraucher im Gebäude – optimal dimensioniert sind, um einen möglichst hohen Solarstrom-Eigenverbrauch zu realisieren“, erklärt Kilper. Auch lasse sich das Lade- und Entladeverhalten des Speichers sowie die weiteren Komponenten des Hausenergie-Managementsystems auf dieser Basis evaluieren. Darüber hinaus ist bei NEXT ENERGY auch die Integration von Elektroautos in Hausenergie-Managementsysteme Gegenstand der Forschungsarbeiten. Komplettiert werden diese durch stationäre Brennstoffzellenanlagen mit Kraft-Wärme-Kopplung (KWK), die im Themenfeld Mikro-KWK-Anlagen des Forschungsbereichs Brennstoffzellen für die Wohngebäude-Ebene konzipiert werden.

In seinen weiteren Forschungsaktivitäten ist der Photovoltaik-Bereich von NEXT ENERGY derzeit in gleich zwei Projekte involviert, die über die „Innovationsallianz Photovoltaik“ der Bundesministerien für Forschung (BMBF) und Umwelt (BMU) gefördert werden. Die Zielsetzung des BMU-Forschungsvorhabens „SiliziumDS12plus“ ist die Entwicklung von hocheffizienten Silizium-Dünnschichtsolarzellen in Triple-Struktur mit einem stabilisierten Wirkungsgrad von über zwölf Prozent.

Erfolgreich sind die NEXT ENERGY-Forscher auch in das BMBF-Projekt „SiSoFlex“ gestartet. Ziel dieses Forschungsvorhabens ist es, mit flexiblen Silizium-Dünnschichtsolarzellen vergleichbare Wirkungsgrade wie auf Glassubstraten zu erzielen. Die Anforderung an die Wissenschaftler besteht vor allem darin, neue flexible Kontakte und alternative Lichtmanagement-Konzepte zu entwickeln.

Heinke Meinen | idw
Weitere Informationen:
http://www.next-energy.de/

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Doc Data – warum Daten Leben retten können
14.06.2019 | Medizinische Hochschule Hannover

nachricht DFG unterstützt Kongresse und Tagungen - August 2019
13.06.2019 | Deutsche Forschungsgemeinschaft (DFG)

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics