Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Internationale Konferenz zur Asteroidenforschung in Garching

13.06.2018

Vor ein paar Tagen explodierte ein kleiner Asteroid am Himmel über Botswana – entdeckt worden war er nur wenige Stunden zuvor. Solche erdnahen Objekte (NEOs) standen im Mittelpunkt einer vierwöchigen Konferenz am Münchner Institut für Astro- und Teilchenphysik (MIAPP) in Garching. Dr. Detlef Koschny, Dozent am Lehrstuhl für Raumfahrttechnik an der Technischen Universität München (TUM), erklärt, warum wir die NEO-Forschung und die Frühwarnmöglichkeiten ausbauen müssen.

Vor 65 Millionen Jahren löschte ein 15 Kilometer großer Asteroid zwei Drittel des gesamten Lebens auf der Erde aus, einschließlich der Dinosaurier. Doch nicht die ganz großen Brocken bereiten den Astronomen Sorgen, sondern eher die kleineren erdnahen Objekte (Near-Earth Objects, NEOs) – wie der Asteroid, der am 2. Juni am Himmel über Botswana zerplatzte, nur einen Tag nachdem er entdeckt wurde.


Dr. Detlef Koschny, Lehrbeauftragter am Lehrstuhl für Raumfahrttechnik der TU München und Leiter des Near Earth Objects-Teams der Europäischen Weltraumorganisation (ESA).

Foto: Andreas Battenberg / TUM

International renommierte Astronomen, Astrophysiker und Weltraumforscher trafen sich in den letzten vier Wochen in Garching bei München, um neue Strategien zur besseren Erkennung, zur wissenschaftlichen und kommerziellen Nutzung und zur Abwehr von NEOs zu entwickeln. Eingeladen hatte sie das Münchner Institut für Astro- und Teilchenphysik, eine Einrichtung des Exzellenzclusters „Origin and Structure of the Universe“ an der Technischen Universität München.

Dr. Detlef Koschny, Leiter des Near-Earth Objects-Teams der Europäischen Weltraumorganisation (ESA) und Dozent am TUM-Lehrstuhl für Raumfahrttechnik, erläutert, warum gerade die kleineren NEOs im Fokus der Forschung stehen.

Was unterscheidet eigentlich einen Asteroiden von einem Meteoriten?

Detlef Koschny: Asteroiden sind Objekte, die größer sind als ein Meter – zum Beispiel das Objekt, das in diesem Monat über Botswana explodiert ist. Meteoroide sind Objekte, die kleiner als ein Meter sind. Wenn sie die Atmosphäre eines Planeten durchflogen haben, werden sie Meteoriten genannt. Kometen sind Asteroiden mit großen Mengen an flüchtigen Verbindungen wie Wassereis. In der Nähe der Sonne verdampfen diese Verbindungen und bilden den unverwechselbaren Schweif.

In Hollywood-Katastrophenfilmen wie „Armageddon“ wird die Erde immer von großen Asteroiden bedroht. Warum sollten wir uns Sorgen um kleinere NEOs machen?

Detlef Koschny: NEOs, die unserem Planeten möglicherweise sehr nahe kommen oder ihn treffen könnten, haben eine Größe von wenigen Millimetern bis etwa 50 bis 60 Kilometern Durchmesser. Die meisten größeren NEOs haben wir inzwischen entdeckt und ihre Bahnen sowie das statistische Risiko für eine Kollision mit der Erde 100 Jahre in die Zukunft berechnet.

90 Prozent der Asteroiden, die einen Kilometer oder größer sind, haben wir kartiert. Wir wissen genau, wo die großen Brocken sind und dass sie keine Bedrohung darstellen. In der „mittleren“ Region ist die Situation völlig anders: Von den NEOs, die kleiner als ein Kilometer sind, haben wir bisher weniger als ein Prozent entdeckt und vermessen.

Träfe ein 100 Meter großer Asteroid die Erde, würde er in einem Gebiet von der Größe Deutschlands und sogar in der umliegenden Region erhebliche Schäden verursachen. Aber Asteroiden dieser Größe treffen die Erde nicht sehr oft. Vielleicht im Durchschnitt alle 10.000 Jahre.

Bei Objekten in der Größenordnung von 50 Metern erhöht sich die statistische Häufigkeit auf einen Einschlag alle 1.000 Jahre. Vor genau einem Jahrhundert, 1908, traf ein 40 Meter großes Objekt die Erde über Tunguska in Sibirien und zerstörte ein Waldgebiet von der Fläche des Großraums München.

Und wenn wir dann auf Asteroidengrößen von 20 Meter gehen – wie der Asteroid, der 2013 in Russland über Tscheljabinsk explodierte und 1.500 Menschen verletzte – solche treten im Durchschnitt alle 10 bis 100 Jahre auf. Wir werden vermutlich so etwas in unseren Leben noch einmal sehen.

Niemand hat den Asteroiden von Tscheljabinsk kommen sehen. Und auch der Asteroid über Botswana wurde erst wenige Stunden vorher entdeckt. Wie ist der aktuelle Stand der NEO-Erkennungstechnologie?

Detlef Koschny: Im Moment laufen auf der Erde zwei große Beobachtungsprogramme, die beide von unseren amerikanischen Kollegen finanziert werden. Sie verwenden optische Teleskope, die ein großes Gesichtsfeld abdecken und kontinuierlich den Nachthimmel abtasten können, um Objekte zu erkennen, die hell genug sind.

Bei größeren Objekten funktioniert diese Strategie ganz gut, denn sie sind schon sichtbar, wenn sie noch weit von der Erde entfernt sind. Kleinere Objekte bis zu einer Größe von 20 Metern sind jedoch sehr schwierig zu erkennen. Sie sind erst erkennbar, wenn sie so nah wie der Mond sind.

Doch wenn Sie nur zwei solcher Teleskope auf dem Planeten haben und jedes Teleskop drei Wochen braucht, um den gesamten Himmel abzusuchen, dann müssen Sie wirklich Glück haben, dass ein solcher Asteroid Ihr Sichtfeld gerade dann durchquert, wenn Sie in die richtige Richtung schauen.

Daher entwickeln wir derzeit extrem weitwinklige Teleskope, die in nur 48 Stunden den gesamten Himmel erfassen können. Im Rahmen des ESA-Programms zur Weltraumlageerfassung (Space Situational Awareness, SSA), in dem ich arbeite, koordiniert das NEO-Koordinationszentrum am ESA Centre for Earth Observation (ESRIN) in Frascati (Italien) die weltweite Zusammenarbeit von Observatorien und Astronomen.

Was sind Ihre Empfehlungen zur Verbesserung der Erkennung und Verfolgung von Asteroiden und welche neuen Technologien werden derzeit oder in naher Zukunft eingesetzt?

Detlef Koschny: Es gibt ein System namens Atlas (Asteroid Terrestrial-impact Last Alert System), das in den USA gerade online gegangen ist. Es besteht aus kleinen Teleskopen. Dies könnten zwar keine Objekte mit geringer Helligkeit sehen, aber fast den gesamten Nachthimmel einmal pro Nacht absuchen. Hier in Europa bauen wir das Flyeye-Teleskop mit einer effektiven Öffnung von einem Meter. Es bietet uns ein großes Gesichtsfeld, mehr als 100 mal so groß wie der Vollmond am Nachthimmel. In einer Nacht können wir mit einem Teleskop etwa die Hälfte des Himmels absuchen. Die Steuerungsstrategie dazu wurde von einem unserer Masterstudenten an der TUM entwickelt.

Unsere wichtigste Schlussfolgerung aus den Diskussionen der letzten Wochen und eine der Empfehlungen, die wir im Abschlusspapier nach der Konferenz geben werden: Es besteht ein dringender Bedarf an weiteren Teleskopen, die den Himmel kontinuierlich nach NEOs absuchen können und an einem globalen Netzwerk von Teleskopen, die konzertiert zusammenarbeiten, so dass wir auch den Bereich der kleineren Asteroiden in der erdnahen Umlaufbahn wirklich abdecken können. Bevor wir konkrete Maßnahmen ergreifen können, um uns gegen sie zu verteidigen, müssen wir diese Objekte erst einmal finden.

Weitere Informationen:

Die Konferenz wurde initiiert und veranstaltet vom Munich Institute for Astro- and Particle Physics (MIAPP), gefördert von der Deutschen Forschungsgemeinschaft (DFG) über den Exzellenzcluster „Origin and Structure of the Universe“ an der Technischen Universität München. Das MIAPP ist am Forschungscampus Garching angesiedelt und ist eingebettet in das akademische Umfeld der Physik-Departments der beiden Münchner Universitäten, der lokalen Max-Planck-Institute und der Europäischen Südsternwarte (European Southern Observatory. ESO).

Exzellenzcluster Universe: http://www.universe-cluster.de

Munich Institute for Astro- and Particle Physics: http://www.munich-iapp.de/
Konferenz: Near-Earth Objects: Properties, Detection, Resources, Impacts and Defending Earth:
http://www.munich-iapp.de/programmes-topical-workshops/2018/near-earth-objects-p...

Website des ESA SSA-NEO Programms: http://neo.ssa.esa.int

World Asteroid Day, 30. Juni: https://asteroidday.org/
ESA World Asteroid Day: http://www.esa.int/asteroidday
ESO World Asteroid Day: https://supernova.eso.org/germany/programme/detail/es1053/


Kontakt:

Dr. Detlef Koschny
Lehrstuhl für Raumfahrttechnik
Technische Universität München
Boltzmannstr. 15, 85748 Garching
Tel.: +49 89 289 16003 - E-Mail: detlef.koschny@tum.de
http://www.lrt.mw.tum.de/index.php?id=5&L=0

European Space Agency SXI-S
Keplerlaan 1, NL-2201 AZ Noordwijk ZH, The Netherlands
Tel.: +31 71 565 4828 - E-Mail: detlef.koschny@esa.int
Web: https://www.esa.int/ESA

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34696/ Link zur Presseinformation
https://www.youtube.com/user/ESA/search?query=asteroid ESA-Videos zu Asteroiden
https://www.esa.int/spaceinimages/Images/2017/02/Flyeye_Observatory
https://www.esa.int/spaceinimages/Images/2017/06/Chelyabinsk_asteroid
https://www.esa.int/spaceinimages/Images/2017/06/Looking_at_Earth_from_an_Astero...

Dr. Ulrich Marsch | Technische Universität München

Weitere Berichte zu: Asteroid ESA ESO Earth Gesichtsfeld Himmel Nachthimmel Space Teleskope

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht 92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet
20.09.2019 | Deutsche Gesellschaft für Neurologie e.V.

nachricht Frische Ideen zur Mobilität von morgen
20.09.2019 | Technische Hochschule Deggendorf

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics