Internationale Forscher diskutieren in Saarbrücken die Mechanik von Materialien auf Mikrometerebene

So bleibt der Draht auch beim Biegen heil, ohne zu brechen. Erst wenn die Kupferkörner kleiner ein Tausendstel Millimeter werden, verändern sich ihre Eigenschaften und damit das Verhalten des Metalls: Es wird härter und bricht schneller.

Warum sich solche mechanischen Eigenschaften eines Materials in kleinsten Dimensionen verändern, diskutieren am 22. und 23. März Materialforscher aus ganz Europa am INM – Leibniz-Institut für Neue Materialien im Rahmen des internationalen Fachkongresses Nanobrücken II.

„Wir wissen, dass sich Materialien in Größenordnungen unter einem Tausendstel Millimeter mechanisch anders verhalten, als in größeren Einheiten“, sagt Roland Bennewitz, Leiter des Programmbereichs „Nanotribologie“. „Warum und wie Materialien ihre Eigenschaften in kleineren Einheiten verändern, ist aber noch nicht vollständig verstanden. Wenn wir die Einflussgrößen dahinter mit unseren Messungen aufklären, können wir zukünftig das mechanische Verhalten von Materialien maßschneidern“, erklärt der Physiker weiter. Eine bestimmte Härte, Zähigkeit, Verformbarkeit und sogar Kombinationen dieser Eigenschaften könnten dann passgenau auf Anwendungen zugeschnitten werden. Neue Konzepte für gehärtete Metalloberflächen oder gleitende Gummidichtungen seien dann in Zukunft denkbar.

Um die Phänomene dahinter zu verstehen, verwenden die Forscher eine besondere Analytik. Beim sogenannten Nanoindenter drückt sich eine feine Nadel in die Oberfläche einer Materialprobe und prüft deren Verformbarkeit. Am INM können die Wissenschaftler Proben mit mikroskopischen Maßen selbst fertigen: Beim sogenannten „Ionen-Ätzen“ werden in eine Oberfläche winzig kleine Säulen mit unterschiedlichen Durchmessern eingearbeitet und diese mit der Nadel abgetastet. Die Eindringtiefe der Nadel, der Kraftaufwand dazu, oder in welcher Art die Säulen beim Abtasten zerquetscht werden sind wichtige Kenngrößen. Das Ganze spielt sich in einer Größenordnung von nur wenigen Millionstel Millimetern ab. „Für die Messungen verwenden wir einen besonderen Nanoindenter der Firma Hysitron, dessen Messmöglichkeiten sogar extra auf unsere Bedürfnisse angepasst wurden“, erklärte der Materialexperte. Normalerweise ließen sich mit einem solchen Gerät im Wesentlichen harte Proben, also Metalle, Keramiken oder auch Perlmutt untersuchen. Mit der extra entwickelten Geräteausstattung sei es kein Problem, auch weiche Proben, zum Beispiel Kunststoffe, zu erforschen.

Für den wissenschaftlichen Disput holt sich das INM das Know-how internationaler Forscher ins Haus. An dem zweitätigen Fachkongress „Nanobrücken II“ nehmen über 60 Forscher aus ganz Europa teil. Professor Jeff De Hosson, ein renommierter Materialwissenschaftler aus den Niederlanden, bereichert als Hauptvortragender die Fachtagung. Der Fachkongress Nanobrücken findet nach dem Jahr 2010 zum zweiten Mal am INM statt. In Form eines Workshops nutzt die Firma Hysitron in diesem Forum die Gelegenheit, technische Neuerungen an seinen Nanoindentern vorzustellen.

Ansprechpartner:
Professor Dr. Roland Bennewitz
INM – Leibniz-Institut für Neue Materialien gGmbH
Programmbereichsleiter Nanotribologie
Tel.: +49 (0)681-9300-213
E-mail: roland.bennewitz@inm-gmbh.de
Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung richten die Forscher ihren Blick auf drei wesentliche Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig für industrielle und lebensnahe Anwendungen nutzen?

Das INM – Leibniz-Institut für Neue Materialien gGmbH mit Sitz in Saarbrücken ist ein international sichtbares Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz e.V. und beschäftigt rund 190 Mitarbeiter. Seine Forschung gliedert sich in die drei Felder Chemische Nanotechnologie, Grenzflächenmaterialien und Materialien in der Biologie.

Media Contact

Dr. Carola Jung idw

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer