Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

IceCube-Forschertreffen in Mainz: Neues von der Suche nach den Geisterteilchen

15.09.2016

IceCube-Detektor in der Antarktis spürt hochenergetische Neutrinos aus dem Weltall auf

Rund 200 Wissenschaftlerinnen und Wissenschaftler aus 12 Ländern, die gemeinsam am Südpol nach Neutrinos aus dem Weltall fahnden, treffen sich Ende September an der Johannes Gutenberg-Universität Mainz (JGU).


Blick über das Eis am geographischen Südpol zur oberirdischen Messstation des IceCube-Experiments. Dort werden die Daten der im Eis eingebetteten Lichtsensoren ausgelesen und mit Rechnerfarmen analysiert. Die Aufnahme entstand während der Dämmerungsphase beim Übergang vom antarktischen Winter (Sonne unterhalb des Horizonts) in den antarktischen Sommer (Sonne oberhalb des Horizonts).

Quelle: Sven Lindstrom, IceCube/NSF

Zentrales Thema ist die geplante Vergrößerung des Neutrino-Observatoriums IceCube im antarktischen Eis. Im Anschluss daran kommen am ersten Oktoberwochenende weitere Forscher, die ähnliche Experimente zur Suche nach kosmischen Neutrinos im Mittelmeer und am Baikalsee betreiben, zu dem Treffen in Mainz hinzu.

Neutrinos sind elektrisch neutrale, nahezu masselose Elementarteilchen. Sie werden auch als Geisterteilchen bezeichnet, da sie ohne Weiteres die Erde durchdringen können. „Manchmal reagieren sie jedoch mit Atomen im stockfinsteren Eis und erzeugen eine Handvoll Lichtteilchen“, erklärt Prof. Dr. Lutz Köpke vom Institut für Physik der JGU.

Das IceCube-Experiment befindet sich am geographischen Südpol in 1450 bis 2450 Meter Tiefe und sucht mit empfindlichen Sensoren in einem „Eiswürfel“ von einem Kubikkilometer Volumen nach diesen Lichtsignalen. Im Jahr 2013 ist es dem Experiment erstmalig gelungen, Neutrinos aus dem All nachzuweisen. Da der Detektor rund um die Uhr in Betrieb ist, konnte die Zahl der gefundenen hochenergetischen Neutrinos in der Zwischenzeit auf fast hundert erhöht werden. Dies ermöglicht immer detailliertere Untersuchungen – ebenfalls ein Thema des IceCube-Treffens.

Viel häufiger als Neutrinos aus dem Weltall – nämlich rund 100.000 Mal pro Jahr – werden solche Neutrinos nachgewiesen, die durch kosmische Strahlung auf der Erde entstehen. Mit diesen Neutrinos kann zum Beispiel das Phänomen der Neutrinooszillation, also die quantenmechanische Verwandlung der drei bekannten Neutrinoarten untereinander, vermessen werden.

Dieser quantenmechanische Effekt wäre auch die einzige Möglichkeit, um Neutrinos zu entdecken, die überhaupt nicht mit Materie reagieren, sogenannte sterile Neutrinos. „Auch dazu werden bei unserem Treffen neue, interessante Ergebnisse vorgestellt“, kündigt Prof. Dr. Sebastian Böser von der JGU an.

Einer der wichtigsten Diskussionspunkte des Treffens wird jedoch die geplante Vergrößerung des IceCube-Detektors sein, mit der die Genauigkeit der Messungen deutlich erhöht werden kann. Hierfür werden unter anderem innovative Lichtsensoren entwickelt, die einerseits die Kosten begrenzen und andererseits die Fähigkeiten des Experiments weiter verbessern.

Die Mainzer Arbeitsgruppe um die Professoren Sebastian Böser und Lutz Köpke trägt zu all diesen Forschungsgebieten teilweise federführend bei. Außerdem wird – parallel zum wissenschaftlichen Programm – ein Workshop zur Forschungskommunikation für Wissenschaftler angeboten, der in Zusammenarbeit mit dem Journalistischen Seminar der JGU veranstaltet wird. Das Treffen der IceCube Collaboration findet vom 24. bis 30. September statt, das anschließende Treffen mit den Gruppen zur Neutrino-Suche im Mittelmeer und im Baikalsee am 1. und 2. Oktober 2016, jeweils im Hörsaalgebäude am Neubau Chemie, Duesbergweg, Campus der Universität Mainz.

Hinweis für die Redaktionen:
Medienvertreter sind herzlich eingeladen, an einzelnen Terminen des Treffens der IceCube Collaboration teilzunehmen oder mit Wissenschaftlerinnen oder Wissenschaftlern Gespräche zu führen. Bitte setzen Sie sich zur Terminabsprache mit Herrn Prof. Köpke vorab in Verbindung.

Weitere Informationen:
Prof. Dr. Lutz Köpke
Experimentelle Teilchen- und Astroteilchenphysik (ETAP)
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
55099 Mainz
Tel. +49 6131 39-22894
Fax +49 6131 39-25169
E-Mail: koepke@uni-mainz.de
http://www.etap.physik.uni-mainz.de/lkoepke_deu.php

Weitere Links:
http://www.etap.physik.uni-mainz.de/icecube_deu.php
http://www.magazin.uni-mainz.de/1898_DEU_HTML.php (JGU-Magazin vom 14.02.2014 „Auf Neutrino-Jagd in der Antarktis“)
http://www.uni-mainz.de/presse/58532.php (Pressemitteilung vom 22.11.2013 „IceCube liefert Anzeichen für Neutrinos aus dem Kosmos“)
http://icecube.wisc.edu/gallery/press/ (IceCube Media Gallery)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?
21.06.2018 | ISOE - Institut für sozial-ökologische Forschung

nachricht Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?
21.06.2018 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics