Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

BMBF-Seminar über regenerative Medizin

16.06.2003


Mit Förderung durch das Bundesministerium für Bildung und Forschung (BMBF) sind neue Methoden für den natürlichen Ersatz und die Regeneration kranker Organe entwickelt worden.

Dabei gelang es unter anderem einer Forschergruppe um den Tübinger Professor Burkhard Schloßhauer getrennte Nervenbahnen zu neuem Wachstum anzuregen. Wissenschaftlerinnen und Wissenschaftlern der Universitäts-Hautklinik in Würzburg entwickelten gemeinsam mit der Firma Biotissue Technologies AG, Freiburg ein neues Verfahren zur Züchtung von Hauttransplantaten. Über 130 Forscher stellten bei einem zweitägigen Seminar des BMBF in Bonn neue Verfahren zum "Biologischen Ersatz von Organfunktionen" und "Tissue Engineering" vor.

Das in Tübingen koordinierte Verbundprojekt "Mikrostrukturierte bioresorbierbare Leitkanäle mit Gliazellen für die Nervenregeneration" überbrückt mit kleinen Röhren die Lücke zwischen den Enden einer unterbrochenen Nervenbahn und regt diese erfolgreich zum Wachstum an. Damit wollen die Forscher die Annahme der Neurowissenschaften widerlegen, dass durchtrennte Nervenbahnen nicht mehr zusammen wachsen können. Patienten, die wegen durchtrennter Nerven an Lähmungen, sensorischen Ausfällen und Schmerzen leiden, könnte so möglicherweise geholfen werden. Derzeit werden die Nervenleitkanäle in Tiermodellen getestet.

Dagegen steht das in Würzburg entwickelte neuartige Verfahren zur Züchtung eines dreidimensionalen, menschlichen Hauttransplantats zur Behandlung tief reichender großer Wunden kurz vor dem Einsatz beim Patienten. Das Hauttransplantat besteht aus körpereigenen oberflächlichen (Keratinozyten) und tiefen Hautzellen (Fibroblasten). Dem Patienten werden verschiedene Hautzelltypen entnommen und im Labor vermehrt. Anschließend wachsen sie in einer dreidimensionalen biologischen Matrix gemeinsam weiter. Nach zwei bis drei Wochen bilden die Zellen eine vollschichtige Ersatzhaut mit bislang unerreichten hauttypischen Eigenschaften. Das neue Verfahren beschleunigt die Heilung, verbessert sie nachhaltig und ist ambulant durchführbar.

Im Schwerpunkt "Biologischer Ersatz von Organfunktionen" fördert das BMBF 32 Vorhaben mit rund zehn Millionen Euro für den Ersatz und die Regeneration kranker Organe mit Stamm- und Vorläuferzellen. Im Bereich "Tissue Engineering" wurden 49 Projekte vor allem für kleine und mittlere Unternehmen mit einem Volumen von 35 Millionen Euro bewilligt, von denen das BMBF 21 Millionen trägt.

Weitere Informationen:

Dr. Andreas Künne
Deutsches Zentrum für Luft- und Raumfahrt (DLR)
Projektträger im DLR Gesundheitsforschung
Tel: 0228 - 3821-204
E- Mail: andreas.kuenne@dlr.de

Pressereferat | BMBF
Weitere Informationen:
http://www.gesundheitsforschung-bmbf.de/aktuelles/Statusseminar_Bio._Ersatz_Organ
http://www.gesundheitsforschung-bmbf.de
http://www.bmbf.de

Weitere Berichte zu: Engineering Organfunktion

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics