Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Internationales Forum zu Nano- und Biowissenschaften "Der Natur abgeschaut"

07.01.2003


Gemeinsame Tagung von LMU und Universität Osaka in München

... mehr zu:
»LMU »Nanostruktur

München, 06. Januar 2003 - Am 16. und 17. Januar 2003 findet das "Forum on Nanoscience and Nanotechnology" in München statt. Die Tagung wird von der LMU München in Zusammenarbeit mit der Universität Osaka, Japan, organisiert. Etwa 200 Teilnehmer aus aller Welt treffen sich in der LMU. In 14 Vorträgen werden Forscher aus Deutschland, Japan, Frankreich, Holland und der Schweiz neben einer allgemeinen Einführung in das jeweilige Gebiet über aktuelle Entwicklungen und Ergebnisse in der Nanoanalytik, -optik und -photonik, sowie über neue Nanowerkzeuge und -maschinen berichten. Besonderer Schwerpunkt: die Biowissenschaften und Anwendungen in der Biotechnologie.

"Das Forum soll die Kooperation zwischen Forschern aus aller Welt fördern und letztlich zu einem Netzwerk akademischer Kontakte führen", erklärt Professor Michael Reichling vom Department für Chemie sowie des Center for NanoScience (CeNS) der LMU. Reichling ist einer der Organisatoren. "Deshalb wollen wir nicht nur Spezialisten, sondern auch Neueinsteiger und Forscher mit allgemeinem Interesse an dem Gebiet und insbesondere den wissenschaftlichen Nachwuchs ansprechen."


Das erste Forum dieser Art fand vor einem Jahr in den USA statt. Mit der diesjährigen Veranstaltung soll im Europäischen Umfeld vor allem die Zusammenarbeit zwischen Spitzenforschern der LMU und der Universität Osaka ausgebaut werden.

Die Nanowissenschaft beschäftigt sich mit Objekten, die nur wenige oder wenige Zehn Nanometer groß sind, wobei ein Nanometer einem Milliardstel Meter entspricht. Nanopartikel und Nanostrukturen sind daher nur aus 100 bis 100.000 Atomen oder Molekülen zusammengesetzt und zeigen physikalische und chemische Eigenschaften oder biologische Funktionen, die sich sehr von denen einzelner Atome oder Moleküle beziehungsweise Gegenständen unserer Alltagswelt unterscheiden.

Die Wissenschaftler haben mittlerweile sehr ausgereifte mikroskopische Methoden entwickelt, um Nanostrukturen auf der atomaren Ebene abzubilden oder Atom für Atom zu manipulieren. Dazu werden feinste Nadelspitzen eingesetzt, aber auch mit intensiven, stark fokussierten Lichtstrahlen können Nanostrukturen vermessen und verändert werden. Lichtgestützte Verfahren werden vor allem zur Untersuchung von Quantenpunkten eingesetzt. Diese, oft in regelmäßiger Struktur angeordneten, Nanopartikel aus Halbleitermaterial bieten ein großes Potenzial für Anwendungen in hochentwickelten, miniaturisierten Systemen der optischen Telekommunikation. Methoden der Nahfeldoptik- wie auch die konfokale Mikroskopie werden genutzt, um einzelne Moleküle bei ihrer Arbeit in biologischen Systemen zu beobachten.

Die belebte Welt zeigt sich äußerst einfallsreich in der Schaffung von Nanostrukturen durch Selbstorganisation. Moleküle setzen sich dabei automatisch wie Legosteine zusammen, um Superstrukturen und letztlich Einheiten mit spezifischen biologischen Funktionen zu bilden. Beispiele dafür sind etwa Zellmembranen oder Botenmoleküle, die Informationen zwischen einzelnen Zellen transportieren. Besonders interessant sind molekulare Motoren, welche zum Beispiel die Bewegung von Bakterien ermöglichen, indem sie deren Geißeln antreiben. Hoch komplexe Enzyme kopieren als Nanomaschinen genetisches Material.

Die Beiträge im Forum werden nicht nur auf die Struktur dieser biologischen Nanosysteme eingehen, sondern auch die Strategien diskutieren, die in der Natur deren Aufbau und Betrieb mit minimalem Energieaufwand ermöglichen. Inspiriert durch diese Vorbilder versuchen Forscher nun, Biomoleküle zum Aufbau künstlicher, selbstorganisierter Nanostrukturen einzusetzen. Damit werden unter anderem Komponenten für die molekulare Elektronik entwickelt, die die Grundlage für eine neue Generation von Computern mit bisher unerreichter Geschwindigkeit und Kapazität bei minimalem Energieeinsatz bilden sollen.

Die Tagung präsentiert aktuelle Ergebnisse auf diesen Gebieten und ist ein Beispiel dafür, wie Forscher im internationalen Austausch neue Konzepte für die Funktionsweise von Nano-Komponenten erarbeiten und Visionen für eine neue Nanowelt entwickeln. "Das geht weit über die Grenzen traditioneller, wissenschaftlicher Disziplinen wie Physik, Chemie, Biologie und Medizin hinaus", sagt Professor Reichling. "Eine umfassende Denkweise zur Beschreibung und Gestaltung der Nanowelt ist die Basis für die lange prophezeite Nano-Revolution, die das Grundlagenwissen auf diesem faszinierenden Gebiet in Technologien, Werkzeuge und letztendlich Produkte zum Nutzen aller umsetzen soll." (suwe)

Ansprechpartner:

Professor Michael Reichling
Department Chemie der LMU und Center for NanoScience (CeNS)
Tel: 089-2180-77603
E-Mail: reichling@cup.uni-muenchen.de

Cornelia Glees-zur Bonsen | idw
Weitere Informationen:
http://www.phys.chemie.uni-muenchen.de/NanoForum/

Weitere Berichte zu: LMU Nanostruktur

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Analyse internationaler Finanzmärkte
10.12.2019 | Universität Heidelberg

nachricht QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien
04.12.2019 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Geminiden - Die Wünsch-dir-was-Sternschnuppen vor Weihnachten

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg - Die Geminiden, die Mitte Dezember zu sehen sind, sind der "zuverlässigste" der großen Sternschnuppen-Ströme mit bis zu 120 Sternschnuppen pro Stunde. Leider stört in diesem Jahr der Mond zur besten Beobachtungszeit.

Sie wurden nach dem Sternbild Zwillinge benannt: Die „Geminiden“ sorgen Mitte Dezember immer für ein schönes Sternschnuppenschauspiel. In diesem Jahr sind die...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Das 136 Millionen Atom-Modell: Wissenschaftler simulieren Photosynthese

Die Umwandlung von Sonnenlicht in chemische Energie ist für das Leben unerlässlich. In einer der größten Simulationen eines Biosystems weltweit haben Wissenschaftlerinnen und Wissenschaftler diesen komplexen Prozess an einem Bestandteil eines Bakteriums nachgeahmt – am Computer, Atom um Atom. Die Arbeit, die jetzt in der renommierten Fachzeitschrift „Cell“ veröffentlicht wurde, ist ein wichtiger Schritt zum besseren Verständnis der Photosynthese in einigen biologischen Strukturen. An der internationalen Forschungskooperation unter Leitung der University of Illinois war auch ein Team der Jacobs University Bremen beteiligt.

Das Projekt geht zurück auf eine Initiative des inzwischen verstorbenen, deutsch-US-amerikanischen Physikprofessors Klaus Schulten von der University of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungsnachrichten

Was Vogelgrippe in menschlichen Zellen behindert

10.12.2019 | Biowissenschaften Chemie

Schäden im Leichtbau erkennen durch Ultraschallsensoren

10.12.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics