Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bei Halbleitern sind "Defekte" durchaus erwünscht

09.07.2001


21. Internationale Konferenz über Defekte in Halbleitern vom 16.-20. Juli in Gießen

Nach 27 Jahren findet die "International Conference on Defects in Semiconductors" in diesem Jahr zum ersten Mal wieder in Deutschland statt. Unter der Leitung von Prof. Dr. Bruno K. Meyer (Universität Gießen) und Prof. Dr. J.-Martin Spaeth (Universität Paderborn) wird sie vom 16. bis 20. Juli 2001 in den Räumen des Fachgebiets Physik an der Justus-Liebig-Universität Gießen (Heinrich-Buff-Ring 14-20, 35392 Gießen) veranstaltet. Eröffnet wird die "21. Internationale Konferenz über Defekte in Halbleitern" (ICDS 21) am Montag, den 16. Juli 2001, um 9 Uhr im Großen Hörsaal der Physik von Prof. Meyer.

Die internationale Konferenz über Defekte in Halbleitern ist eine der wichtigsten Konferenzen auf dem Gebiet der Halbleiterphysik. Halbleiter sind aus dem täglichen Leben nicht mehr wegzudenken, da sie unsere ganze "elektronische" Umgebung erst möglich machen. Von der Quarz-gesteuerten Uhr über den PC bis zum Mobiltelefon: Entscheidend sind bei all diesen Geräten die Halbleiterbauelemente vor allem aus Silizium, aber auch aus anderen Halbleitern, wie Galliumarsenid für Mobiltelefone oder für die Optoelektronik, in Zukunft allerdings auch Galliumnitrid und Siliziumkarbid für die Herstellung von UV-Lasern bzw. elektronischen Leistungsbauelementen.

Ganz reine Halbleiter sind für all dies allerdings gar nicht zu gebrauchen. Man muss sie mit bestimmten Fremdatomen versehen ("dotieren"), damit sie die gewünschten Eigenschaften zeigen. Diese Verunreinigungen, die in äußerst kleinen Konzentrationen beigegeben werden, stellen gewissermaßen Unregelmäßigkeiten der reinen Halbleiter-Kristallgitter dar und werden deswegen als Defekte bezeichnet. Somit ist das Studium der Defekte in Halbleitern auch technologisch ein sehr wichtiges Forschungsgebiet, auf welchem international die großen Elektronik-Firmen sowie zahlreiche Universitäten und Forschungsinstitute tätig sind, und das teilweise mit erheblichem Aufwand an Personal und Apparaturen. Dabei wird heute auch immer mehr das sogenannte "Defect Engineering" betrieben, d.h. die maßgeschneiderte Herstellung von Halbleitern ganz bestimmter erwünschter Eigenschaften, nachdem die Rolle gewisser Defekte grundsätzlich verstanden ist.

Die ICDS 21 bringt Experten auf dem Gebiet der Forschung an Halbleiterdefekten aus allen Industrieländern zusammen. Die Veranstalter freuen sich besonders darüber, dass es ihnen gelungen ist, die internationale Tagung nach 27 Jahren wieder nach Deutschland zu holen (1974 fand sie in Freiburg statt). Gegenüber der letzten Tagung 1999 in Berkeley/USA erlaubt die zentrale Lage Deutschlands die Teilnahme von erheblich mehr Wissenschaftlern aus den osteuropäischen Ländern, wo nach wie vor das Arbeitsgebiet Halbleiterdefekte intensiv bearbeitet wird. Ein Zentrum dieser Arbeiten in Deutschland bildet der Forschungsschwerpunkt Materialforschung an der Justus-Liebig-Universität Gießen in der Physik.

An der Gießener Tagung nehmen etwa 340 Delegierte aus 39 Ländern mit starken Kontingenten aus Deutschland (80), USA (35), Japan (50), Großbritannien (20) und den GUS-Staaten (50) teil. Im Vordergrund der diesjährigen Tagung stehen neben den Forschungsarbeiten um das Silizium, dem immer noch wichtigsten Halbleiter, solche, die mit der zukünftigen Herstellung von Laser-Licht im blauen und ultravioletten Spektralbereich zusammen hängen (Galliumnitrid, Zinkoxid), einer eminent wichtigen Entwicklung für eine zukünftige Kommunikationstechnologie mit Lichtfasern, aber auch zur energiearmen Erzeugung beliebig farbigen Lichtes für generelle Anwendungen (z.B. großflächige Displays, Weißlichtquellen). Weiterhin stehen Entwicklungen bei den Materialien für die Hochfrequenz- und Hochleistungselektronik (Mobilfunk) auf dem Tagungsprogramm, und nicht zu vergessen: Probleme bei Solarzellenmaterialien.

Die Veranstalter erwarten von der Tagung wichtige neue Impulse für Forschung und industrielle Anwendungen und auch, "dass junge Physiker sich verstärkt für dieses Forschungsgebiet interessieren, was besonders unser Land zunehmend bitter nötig hat".

Kontaktadressen:

Prof. Dr. Bruno K. Meyer
I. Physikalisches Institut
Heinrich-Buff-Ring 14-20
35392 Gießen
Tel.: 0641/99-33100
Fax: 0641/99-33109
E-Mail: Bruno.K.Meyer@physik.uni-giessen.de

Prof. Dr. J.-Martin Spaeth
Fachbereich Physik
Warburgerstr. 100 a
33098 Paderborn
Tel.: 05251/60-2742
Fax: 05251/60-3247
Spaeth@physik.uni-paderborn.de

Christel Lauterbach | idw

Weitere Berichte zu: Mobiltelefon

Weitere Nachrichten aus der Kategorie Veranstaltungsnachrichten:

nachricht Analyse internationaler Finanzmärkte
10.12.2019 | Universität Heidelberg

nachricht QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien
04.12.2019 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kein Seemannsgarn: Hochseeschifffahrt soll schadstoffärmer werden

11.12.2019 | Ökologie Umwelt- Naturschutz

Vernetzte Produktion in Echtzeit: Deutsch-schwedisches Testbed geht in die zweite Phase

11.12.2019 | Informationstechnologie

Verbesserte Architekturgläser durch Plasmabehandlung – Reinigung, Vorbehandlung & Haftungssteigerung

11.12.2019 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics