Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Woher stammt die Nahrung im Ozean?

03.12.2013
Kieler Isotopenforscher auf Spurensuche in marinen Nahrungsnetzen

Die Ozeane bedecken fast 75 Prozent der Erdoberfläche und sind seit jeher eine wichtige Nahrungs- und Rohstoffquelle. Doch Überfischung, Meeresverschmutzung und Missmanagement bedrohen die marinen Ökosysteme und damit eine der wichtigsten Ressourcen der Erde.


Dr. Thomas Larsen untersucht im Isotopenlabor der Uni Kiel die Nahrungsbeziehungen in marinen Lebensräumen. Foto: Future Ocean, Christian Urban

Um diesen drohenden Verlust aufzuhalten, ist zunächst ein besseres Verständnis der auf den Ozean wirkenden Einflussfaktoren notwendig. Die Lebensräume im Meer bestehen aus unzähligen Organismen, die in weit verzweigten Nahrungsnetzen direkt oder indirekt voneinander abhängen.

Die darin enthaltenen Nahrungsbestandteile wie Aminosäuren, Kohlenhydrate oder Fette kommen nur zum Teil aus dem Meer, andere Quellen liegen an Land. Woher genau marine Lebewesen diese Grundbausteine des Lebens beziehen, ist auch heute noch wenig erforscht. Denn von welchem Organismus die Nahrungsbestandteile ursprünglich gebildet wurden, war bisher nicht mehr zurückzuverfolgen, sobald sie von einem Tier verdaut wurden.

Eine internationale Kooperation von Wissenschaftlern unter Beteiligung des Lebniz Labors für Isotopenanalyse der Christian-Albrechts-Universität zu Kiel (CAU) und des Kieler Exzellenzclusters „Ozean der Zukunft“ hat nun eine Methode vorgestellt, wie man mittels Isotopenanalyse vom spezifischen Fingerabdruck der Aminosäuren auf den Ursprungsorganismus schließen kann. Die Ergebnisse der Untersuchungen sind kürzlich im internationalen Fachmagazin PLOS one und in der aktuellen Ausgabe des Journals ESA Ecology erschienen.

Gemeinsam mit Forschenden aus Kalifornien und Alaska ist es dem Kieler Biologen Dr. Thomas Larsen vom Exzellenzcluster „Ozean der Zukunft“ nun gelungen, die Nahrung von marinen Lebewesen bis zu ihrem Ursprungsorganismus zurück zu verfolgen. Dazu konzentrierten sich die Forschenden auf Aminosäuren, die als Bausteine der Proteine extrem häufig vorkommen und in der Nahrung vieler Meereslebewesen zu finden sind. Sie entdeckten, dass jeder Organismus über eine charakteristische Signatur in seinen Aminosäuren verfügt.
Diese Spuren sind auf natürliche Isotopen-Variationen zurück zu führen und entstehen während der Biosynthese. Anhand dieses unverwechselbaren Fingerabdrucks der Aminosäuren kann nun zum ersten Mal festgestellt werden, welcher Organismus sie ursprünglich gebildet hat. So kann nachgewiesen werden, ob die von einem Tier mit der Nahrung aufgenommenen Aminosäuren z.B. von Algen, Bakterien, Pilzen oder Pflanzen stammen. Dieses Wissen lässt so auch Rückschlüsse über den Ort der Nahrungsaufnahme und damit die Ansprüche einer Art an ihren Lebensraum zu.

„Die nun zur Verfügung stehende Fingerabdruckmethode hilft insbesondere dabei, die Nahrungsbeziehungen in marinen Lebensräumen besser zu verstehen“, betont Dr. Thomas Larsen vom Leibniz Labor für Isotopenforschung an der CAU und Postdoktorand im Exzellenzcluster „Ozean der Zukunft“. In einer Untersuchung der Universität von Hawaii zur Anwendung gebracht, konnte das Verfahren seine Vorteile zunächst auf ganz praktische Weise unter Beweis stellen: Anders als z.B. bei der Ausstattung von Tieren mit Funksendern oder ähnlichem reicht hier eine rasch zu entnehmende Gewebeprobe aus, die Tiere werden nur minimal gestört. Damit eignet sich die Fingerabdruck-Methode besonders, um eine bedrohte Tierart wie die Suppenschildkröte Chelonia mydas zu untersuchen.
Vor allem brachte sie aber vielversprechende neue Erkenntnisse zum Fress- und Wanderungsverhalten dieser im zentralen Pazifik lebenden Meeresschildkröte. Die Tiere verbringen ihre Jugend auf offener See, als erwachsene Tiere leben sie vorwiegend im Küstenbereich. Während dieser Lebensabschnitte ernähren sie sich also von stark unterschiedlicher Nahrung: Auf See nehmen sie tierische Nahrung wie z.B. Quallen auf, während sie in Küstennähe auf pflanzliche Nahrungsquellen z.B. aus Seegräsern angewiesen sind. Um die schlechtere Qualität dieser pflanzlichen Nahrung zu kompensieren, greifen die Tiere auf symbiotische Mikroorganismen zurück. Sie leben im Verdauungstrakt der Tiere und bilden dort wichtige Aminosäuren, die nicht aus der minderwertigeren Pflanzennahrung aufgenommen werden können. Die unterschiedlichen Nahrungsquellen und die Beteiligung der Symbionten lassen sich anhand abweichender Aminosäure-Signaturen nachweisen.

Anders als bisher angenommen suchen aber gelegentlich auch erwachsene Suppenschildkröten zum Fressen das offene Meer auf. Dies belegen die entsprechenden Aminosäure-Signaturen tierischen und marinen Ursprungs, die auch in der Nahrung adulter Tiere zu finden sind. Möglicherweise wechseln diese erwachsenen Schildkröten kurzfristig zu höherwertiger Nahrungsquellen, um zusätzliche Energiereserven beispielsweise für die Eiablage aufzubauen. Damit liefert die neue Methode erste Hinweise, dass es unter erwachsenen Suppenschildkröten verschiedene Strategien der Nahrungssuche gibt und die bisherigen Annahmen über das Wander- und Fressverhalten dieser Art zum Teil nicht mehr haltbar sind. Diese Erkenntnisse sind auch wichtig, um Schutzstrategien für den Lebensraum dieser bedrohten Meeresschildkröte zu optimieren. Insgesamt liefert die Fingerabdruck-Methode ein vielfältig einsetzbares Werkzeug, das künftig zum besseren Verständnis komplexer Nahrungsbeziehungen in marinen Lebensräumen beitragen kann.

Originalarbeiten:
[1] Thomas Larsen, Marc Ventura, Nils Andersen, Diane M. O’Brien, Uwe Piatkowski, Matthew D. McCarthy (2013). "Tracing Carbon Sources through Aquatic and Terrestrial Food Webs Using Amino Acid Stable Isotope Fingerprinting." Plos One 8(9). http://dx.doi.org/10.1371%2Fjournal.pone.0073441 For further information contact: Dr. Thomas Larsen, Christian-Albrechts-Universität zu Kiel; Email: tl@leibniz.uni-kiel.de or Phone: +49-431-880-3896,+49-177-829-3691 or Prof. Matthew McCarthy, University of California, Santa Cruz; Email: mccarthy@pmc.ucsc.edu or Phone: 01-831-459-4718

[2] Karen Elisabeth Arthur, Shaleyla Kelez, Thomas Larsen, C. Anela Choy, Brian N. Popp, (2013). "Tracing the biosynthetic source of essential amino acids in marine turtles using δ13C fingerprints." Ecology (In Press). http://www.esajournals.org/doi/abs/10.1890/13-0263.1 For further information contact: Prof. Brian N. Popp, University of Hawaii; Email: popp@hawaii.edu or Phone: 808-956-6206.

Links:
Exzellenzcluster „Ozean der Zukunft“
www.ozean-der-zukunft.de

Leibniz Labor für Altersbestimmung und Isotopenforschung, CAU Kiel
www.leibniz.uni-kiel.de

Kontakt:
Thomas Larsen,
Leibniz Labor für Altersbestimmung und Isotopenforschung, CAU Kiel
Tel.: 0431-880-3896, E-Mail: tl@leibniz.uni-kiel.de
Christian Urban, Öffentlichkeitsarbeit, Exzellenzcluster „Ozean der Zukunft“
Tel.: 0431-880-5627, E-Mail: curban@uv.uni-kiel.de

Link zur Pressemittteilung:
www.uni-kiel.de/pressemeldungen/index.php?pmid=2013-371-marine-food-sources

Christian Urban | Uni Kiel
Weitere Informationen:
http://www.leibniz.uni-kiel.de
http://www.uni-kiel.de

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Kohlenstoffbilanz im tropischen Regenwald des Amazonas
11.11.2019 | Helmholtz-Zentrum für Umweltforschung - UFZ

nachricht Absinkende Luftpakete mitverantwortlich für Hitzewellen
08.11.2019 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

20.11.2019 | Materialwissenschaften

Eisberge als Nährstoffquelle - Führt der Klimawandel zu mehr Eisendüngung im Ozean?

20.11.2019 | Geowissenschaften

Gehen verändert das Sehen

20.11.2019 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics