Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzen unter Silberstress

14.11.2012
Mit Nanosilber wachsen Feuchtpflanzen schlechter – egal ob diese in Petrischalen oder im Boden kultiviert werden. Manche Pflanzen verkraften eine Silberbelastung besser als andere. Abhängig ist die Reaktion auch von der Partikelart und der Bodenstruktur.

Ist Nanosilber (AgNP) eine Gefahr für die Ökosysteme? Nanosilber zählt zu den am häufigsten verwendeten synthetisch hergestellten Nanopartikeln. Wegen seiner antimikrobiellen Eigenschaften wird es in vielen Konsumprodukten eingesetzt und gelangt so auch in die Umwelt. Laborstudien mit Reinkulturen zeigen, dass Nanomaterialien Mikroben-, Pflanzen- und Tierzellen schädigen können.


Unterschiedliche Pflanzenarten verkraften eine Silberbelastung also unterschiedlich gut. Abhängig ist diese Reaktion auch von der Partikelart und dem Entwicklungsstadium der Pflanze (Quelle: © Fredlyfish4 / wikipedia.de).

Reinkulturen sind Zellpopulationen, die durch Vermehrung einer einzelnen Zelle bzw. eines einzelnen Mikroorganismus unter Laborbedingungen erzeugt werden – unter Ausschluss jeglicher Individuen anderer Arten. Ob sich diese Ergebnisse auch auf das natürliche Ökosystem übertragen lassen, haben Forscher nun mit zwei Experimenten untersucht. Sie beobachteten die Reaktionen von 11 Feuchtpflanzenspezies auf Nanosilber in einer Reinkultur (Experiment 1) und in Töpfen mit Erde (Experiment 2).

In der Reinkultur: Effekte auf Keimung und Wachstum

Im Reinkultur-Experiment untersuchten die Forscher, wie sich Nanosilber in unterschiedlichen Formen und Mengen auf die Keimung und das Wachstum der Pflanzen auswirkte. Hierzu ließen sie Samen jeder Spezies entweder in reinem Wasser (Kontrolle) oder in einer Nanosilberlösung quellen und kultivierten diese dann in Petrischalen. Die Nanosilberlösung enthielt Silbernitrat (AgNO3), Polymer beschichtete (PVP-AgNPs) oder Gummi arabicum beschichtete Nanosilberpartikel (GAAgNP). Auch Konzentration der Lösung wurde variiert. Nach 20 Tagen verglichen die Forscher die Keimungsrate (Verhältnis der gekeimten Samen zur Gesamtzahl) sowie die Wurzel- und Sprosslänge der untersuchten Arten.

3 von 11 Arten keimten schlechter, wenn sie mit Gummi beschichteten Nanosilberpartikeln behandelt wurden. Demgegenüber verbesserte Silbernitrat die Keimungsrate von 5 der 11 Arten. Die Polymer beschichteten Partikel hatten keinen Einfluss auf die Keimung. Einige Pflanzen reagierten auf eine Silberbelastung mit einem reduzierten Blattwachstum. Nur eine Pflanze, Carex lurida, wuchs besser. Die drei Formen von Nanosilber riefen je nach Konzentration und Spezies zudem unterschiedliche Effekte hervor: So wuchs Carex lurida nur dann besonders gut, wenn sie entweder mit Polymer beschichteten Partikeln in hoher, Gummi beschichteten Partikel in niedriger oder Silbernitratpartikeln in mittlerer Konzentration behandelt wurde. Mit wenigen Ausnahmen hatten Pflanzen unter Silberbelastung auch deutlich kürzere Wurzeln als Pflanzen der Kontrollgruppe. Besonders groß war dieser Unterschied bei Pflanzen, die mit Gummi beschichteten Partikeln behandelt wurden. Zwei Arten hatte längere Wurzeln unter Silberbelastung – warum? Die Forscher vermuten, dass das Silber den Auxintransport in der Wurzel stört und damit zu einem unkontrollierten Wurzelwachstum führt. Die langen Wurzeln könnten jedoch auch auf eine spezielle Bewältigungsstrategie hinweisen, mit der einige Pflanzenspezies versuchen, einem kontaminiertem Umfeld auszuweichen.

Im Boden: Effekte auf das Wachstum

In einem zweiten Experiment säten die Forscher Samen von je 7 Arten in Töpfe mit homogenisierter Erde. Die Erde besprühten sie entweder mit den unterschiedlichen Silberpartikeln oder mit reinem Wasser. Nach 7 Wochen wurde die Blattbiomasse getrocknet und für jede Spezies gewogen.

Während die Nanopartikel im Boden die Keimung der meisten Arten nicht beeinflussten, zeigten sich deutliche Effekte auf das Wurzel- und Sprosswachstum: Pflanzen, die mit Gummi beschichteten Partikeln behandelt wurden, waren deutlich kleiner als alle anderen Pflanzengruppen – mit einer Ausnahme: das Italienische Weidelgras (Lolium multiflorum) wuchs besser.

Interaktion Pflanze – Nanopartikel

Unterschiedliche Pflanzenarten verkraften eine Silberbelastung also unterschiedlich gut. Abhängig ist diese Reaktion auch von der Partikelart und dem Entwicklungsstadium der Pflanze. Silbernitrat begünstigte die Keimung der Pflanzen in Petrischale und Boden, während die Polymer beschichteten Partikel kaum Effekte hatten. Die Gummi beschichteten Partikel jedoch wirkten sich sowohl auf die Keimung als auch auf das Wurzel- und Blattwachstum negativ aus. Frühere Studien haben gezeigt, dass beschichtete Nanopartikel im Vergleich zu gelöstem Silber in Silbernitrat pflanzliche Zellen schädigen können. Da die Gummi beschichteten Partikel (6 nm) deutlich kleiner sind als die Polymer beschichteten (21nm), können sie die wenige Nanometer großen Poren pflanzlicher Zellen einfacher überwinden – sie reichern sich leichter an und sind toxischer. Auch die Art der Partikelhülle und die Oberflächenspannung könnten die Toxizität beeinflussen. Das vorhandene Silber-Ion verbessert die Bioverfügbarkeit von Nanosilberpartikeln. Physikalisch-chemische Prozesse im Boden und auch Interaktionen mit anderen Pflanzen können diese Bioverfügbarkeit und damit die Anreicherung von Silberpartikeln in Pflanzen jedoch beeinflussen.

Die Wurzel ist das Tor zur Pflanze

Samen sind durch ihre Schale vor schädlichen Substanzen besser geschützt als die Wurzeln und Blätter eines Keimlings. Schädliche Stoffe im Boden erreichen zuerst die Wurzeln, sie werden daher auch schneller geschädigt. Silber wird vor allem in der Wurzel angereichert, der Transport in andere Pflanzengewebe ist gering. Dies könnte erklären, warum sich Nanosilber stärker auf das Wurzelwachstum auswirkt aus auf das Blattwachstum.

Strategie: Flucht oder Ertragen

Warum reagieren Pflanzen, die im selben Boden wachsen, so unterschiedlich auf Nanosilber? Die Forscher vermuten, dass Spezies unterschiedliche Strategien entwickelt haben, um auf hohe Silberkonzentrationen zu reagieren. Während einige Arten versuchen, dem kontaminierten Boden mit langen Wurzeln zu entkommen (Flucht-Strategie), müssten Arten ohne solche Strategien diesen Stress ertragen. Bisher kann aber noch kein klarer Zusammenhang zwischen der Taxonomie und der verfolgten Anpassungsstrategie ausgemacht werden. Die Studie liefert neue Erkenntnisse zum Transport und Verbleib von Nanopartikeln in Boden kultivierten Pflanzen, zu Wechselwirkungen zwischen Pflanze und Nanopartikel sowie zum Einfluss gemischter Pflanzengesellschaften auf die Toxizität von Nanopartikeln. Für die Forschung bleibt aber noch viel zu tun. Prinzipiell lässt sich daraus schließen, dass für technische Substanzen im Rahmen einer Risikobewertung überprüft werden, wie sich diese auf den Menschen und auf natürliche Systeme auswirken.
Quelle:

Yin, Liyan et al. (2012): Effects of Silver Nanoparticle Exposure on Germination and Early Growth of Eleven Wetland Plants. PLoS ONE 7(10): e47674. doi:10.1371/journal.pone.0047674.

Yin, Liyan et al. | Pflanzenforschung.de
Weitere Informationen:
http://www.Pflanzenforschung.de

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Studie zum Klimaschutz: Mehr Wald – weniger Fleisch
15.10.2019 | Karlsruher Institut für Technologie

nachricht Neuartiges Verfahren für das Kunststoffrecycling präsentiert: Großes Industrie-Interesse an Forschungsprojekt „MaReK"
09.10.2019 | Hochschule Pforzheim

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Forscher der Universität Münster gewinnen neue Einblicke in die Evolution von Proteinen

22.10.2019 | Biowissenschaften Chemie

Die nackte Wahrheit: Wenn ein Mikroorganismus seine Hüllen fallen lässt

22.10.2019 | Biowissenschaften Chemie

Es war wirklich der Asteroid

22.10.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics