Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleine Alge – große Wirkung

22.09.2015

In einer neuen Studie haben Wissenschaftler des ZMT deutliche Veränderungen im Kalkskelett der Grünalge Halimeda als Folge einer saureren Wasserumgebung festgestellt. Diese könnten sich auf die Entstehung tropischer Strände und Inseln auswirken, da viele zum großen Teil aus Skeletten der Grünalge Halimeda bestehen.

Die Versauerung der Ozeane schreitet unaufhaltsam fort. Insbesondere Meeresorganismen mit Kalkskelett wie Muscheln, Korallen oder Kalkalgen können darunter zu leiden. In einer neuen Studie haben Wissenschaftler des Leibniz-Zentrums für Marine Tropenökologie (ZMT) in Bremen deutliche Veränderungen im Kalkskelett der Grünalge Halimeda als Folge einer saureren Wasserumgebung feststellen können. Sie werfen ein Licht auf die Prozesse, die sich bei einem niedrigeren pH-Wert, also bei saurerem Wasser, im Skelett des Kalkbildners tatsächlich abspielen. Da in vielen tropischen Regionen Sandstrände zu einem großen Teil aus Skelettbruchstücken dieser Algenart bestehen, können sich diese Veränderungen auch auf die Zusammensetzung und Entstehung tropischer Strände und Inseln auswirken.


Halimeda opuntia

Foto: A. Wizemann, ZMT


Halimeda mit Kalknadeln im Inneren

Foto: A. Wizemann, ZMT

In der Meerwasseranlage des ZMT setzten die Forscher die Halimeda-Algen Wasser mit einem niedrigeren pH-Wert aus, wie man ihn in 40 bis 50 Jahren in vielen Regionen der Meere vorfinden könnte. Bei den Untersuchungen legten sie den Fokus erstmals auf den Bau des Algenskeletts. „Während viele Arbeiten an Kalkalgen oder Korallen bisher nur die Menge an produziertem Kalkskelett bei unterschiedlichen pH-Werten vergleichen, haben wir die Mikrostruktur des Skelettes ins Visier genommen. Wir setzen dafür unser Rasterelektronenmikroskop ein, das Strukturen von Tieren und Pflanzen bis zu 100.000-fach vergrößern kann“, berichtet der Biologe André Wizemann, einer der Autoren der Studie.

Wie die Forscher beobachten konnten, bildet die Halimeda-Alge ein Skelett aus feinen Kalknadeln, die sie tagsüber an der Zelloberfläche ausscheidet. Nachts rekristallisieren die Nadeln – sie lösen sich teilweise auf und fügen sich neu zu einem dichten, kompakten Skelettpanzer zusammen. Damit schützt sich die Alge vor Fressfeinden und gewinnt an Stabilität, damit sie bei stärkerer Wasserströmung beispielsweise an Kanten von Korallenriffen überleben kann.

Ein derart massives Skelett kann sich jedoch nur bilden, wenn die Kalksättigung im umgebenden Wasser hoch ist. Bei einem niedrigeren pH-Wert nimmt der Gehalt an Kalziumkarbonat im Meer dagegen ab. „Wir fanden bei den Algen aus dem saureren Wasser vorwiegend nur die feinen, von den Algenzellen gebildeten Nadeln. Die Alge kann zwar ungehindert Kalk bilden, es fehlte ihr aber das feste Stützwerk, da der Prozess der Rekristallisation gestört war“, berichtet Wizemann.

Die kleinen Halimeda-Algen mögen auf den ersten Blick unspektakulär wirken. „In wärmeren Küstenregionen sind die Kalkstrukturen toter Halimeda-Algen aber ein wichtiger Bestandteil von Sedimenten“, erklärt ZMT-Forscher Wizemann. „Auf den karibischen Inseln können ihre Skelettteile bis zu 50% des Strandsandes ausmachen.“ Ist ihr Kalkskelett jedoch schwach ausgebildet und brüchig, kann das weitreichende Folgen haben. Die feinen Kalknadeln lösen sich leichter im Wasser als ein kompaktes Skelett, von den Algen bleibt nach ihrem Tod also nicht mehr viel übrig. Dies wiederum könnte die Entstehung von tropischen Stränden und Korallenriffinseln beeinträchtigen, die zum Großteil aus kalkigen Sedimenten bestehen.

Publikation
Wizemann, A., Meyer, F.W., Hofmann, L.C., Wild, C., Westphal, H. (2015). Ocean acidification alters the calcareous microstructure of the green macro-alga Halimeda opuntia. Coral Reefs 34(3), pp. 941-954. DOI: 10.1007/s00338-015-1288-9.

Dr. Susanne Eickhoff | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.zmt-bremen.de

Weitere Berichte zu: Alge Algen Algenart Kalkalgen Korallen Marine Marine Tropenökologie Meere Sedimenten Skelett Tropenökologie ZMT pH-Wert

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics