Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Umweltschutz durch weniger Schwermetalle in Industrieabwässern: EU-Projekt METASEP

08.05.2001


... mehr zu:
»METASEP »Schwermetall
13 Universitäten, Forschungsinstitute und sieben Industriepartner aus Europa arbeiten gemeinsam an neuen umweltschützenden und gleichzeitig kostengünstigen Verfahren, um Schwermetalle aus Industrieabwässern
abzutrennen. Mit über fünf Millionen Mark fördert die EU für drei Jahre das Projekt, das insgesamt ein Volumen von rund acht Millionen Mark hat.

Die Universität des Saarlandes hat mit Unterstützung des Saarbrücker Spin-off-Unternehmens EURICE die Federführung des Gesamtprojekts übernommen.

Tagtäglich fließen weltweit mit Industrieabwässern Schwermetalle in Flüsse, Seen und Meere und gelangen - auch über das Trinkwasser - in die Nahrungskette. Von Arsen über Blei, Cadmium, Chrom, Cobalt, Kupfer, Nickel und Quecksilber bis hin zu Zink: Als Emissionen geraten die Schadstoffe in die Abwässer, sei es von Abfalldeponien oder bei der Herstellung von Computern, Batterien, und Verpackungen, auch im Bergbau- und Hüttenwesen oder bei Wärmegewinnungsprozessen. Ein Teufelskreis setzt sich in Gang: Schwermetalle, also Metalle mit hoher Dichte (mehr als 4,5g pro Kubikzentimeter), sind nicht abbaubar. Sie reichern sich auch im Körper an und wirken ab einer bestimmten Konzentration toxisch.

Gesetzliche Bestimmungen schreiben Grenzwerte vor, wie viel Schwermetall Abwässer enthalten dürfen - und natürlich gibt es Verfahren, die die Schwermetalle aus den Abwässern filtern. Diese sind jedoch meist teuer und oft auch unzuverlässig. Außerdem: Die herausgefilterten Schwermetalle sind nicht wiederverwertbar; sie müssen entsorgt werden, was die Umwelt und ebenfalls den Geldbeutel der Unternehmen belastet.

13 Universitäten und Forschungsinstitute aus Europa - aus Belgien, Bulgarien, Deutschland, Griechenland, den Niederlanden, der Slowakischen Republik und der Tschechischen Republik - haben sich nun zusammengetan, um gezielt Verfahren zu entwickeln, die zum einen umweltschützend und zum anderen optimiert und kostengünstig sind. Das Kooperationsprojekt METASEP wird für drei Jahre von der EU mit über fünf Millionen Mark gefördert. Insgesamt beläuft sich das Volumen des Projekts auf rund acht Millionen Mark.
An der Universität des Saarlandes laufen die Fäden zusammen: Hier hat der Lehrstuhl für Prozesstechnik (Prof. Dr.-Ing. Horst Chmiel) die Federführung des Gesamtprojektes übernommen; Leiter des Projektes und verantwortlich für die Koordination ist Privatdozent Dr.-Ing. Valko Mavrov. Professor Chmiel, der auch die an METASEP beteiligte Gesellschaft für umweltkompatible Prozesstechnik (upt) leitet, ist in seiner Funktion als Geschäftsführer der upt technischer Projektführer des Vorhabens.

METASEP setzt an dem Problem an, das bislang vor allem in ärmeren Ländern den Umweltschutzgedanken häufig in den Hintergrund treten lässt: an den Kosten. Billige und dennoch hundertprozentig zuverlässige Verfahren sollen es Unternehmen auch wirtschaftlich schmackhaft machen, Grenzwerte im Sinne des Umweltschutzes einzuhalten.

Die neuen Techniken beruhen auf so genannten "metal bonding agents", das sind für die jeweiligen Schwermetalle maßgeschneiderte Hilfsstoffe, die dem Abwasser in besonderen Verfahren zugesetzt werden. Sie lagern sich an die Schwermetall-Teilchen an und die auf diese Weise "vergrößerten" Teilchen werden mit speziellen, für die jeweiligen Erfordernisse entwickelten Membranen abgefangen.
Der Clou bei dieser Methode: Die aufgefangenen Schwermetalle können wieder verwertet werden, was vor allem auch bei teuren Metallen wie Germanium interessant ist.
Und: Auch die Hilfsstoffe kann man nach ihrer Abtrennung von den Schwermetallen erneut einsetzen.

Im Kooperationsverbund werden von den Partnern, die aus verschiedensten wissenschaftlichen Disziplinen kommen, unterschiedliche Bestandteile dieser Verfahren erforscht und entwickelt: Während die einen die Hilfsstoffe optimieren und an die besonderen Eigenschaften der einzelnen Metalle anpassen, arbeiten andere an Membranen oder Modulen, durch die das Abwasser zur Reinigung strömt. Auch Kombinationen mit herkömmlichen Verfahren werden erprobt. Um die Entwicklungen optimal auf die Ansprüche und Probleme der Unternehmen abzustimmen, stehen die Forscher in engem Kontakt zur Industrie. Mit sieben Partnern aus der Wirtschaft arbeiten sie bereits zusammen - weitere Industriepartner werden gesucht!
In Saarbrücken wird neben den Forschungsarbeiten die upt, die als eigenes Forschungsinstitut in Nachbarschaft der Universität angesiedelt ist, die Ergebnisse im Rahmen von METASEP testen.

Unterstützt wird die aufwendige Koordination und Organisation des europäischen Großprojekts durch die Firma EURICE (European Research and Project Office GmbH), wie bereits erwähnt ein Spin-off-Unternehmen aus der Saar-Universität. Dieses Dienstleistungsunternehmen für Forschungs- und Projektmanagement bietet bei EU-Projekten Betreuung und umfassende Unterstützung während der gesamten Dauer des Vorhabens und ist zentrale Koordinierungsstelle für alle organisatorischen Fragen von EU-Forschungsförderung.

Info im Internet: http://www.eurice.de/METASEP/
Sie haben Fragen? Dann setzen sie sich bitte in Verbindung mit Torsten Erwe, Tel: 0681/ 9345-209, E-Mail: t.erwe@mx.uni-saarland.de

Weitere Informationen finden Sie im WWW:

Claudia Brettar | idw

Weitere Berichte zu: METASEP Schwermetall

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Folgen des Klimawandels: Viele Pflanzenarten wohl stärker gefährdet als bisher angenommen
11.02.2020 | Universität Hohenheim

nachricht Pflanzenblätter als Verpackungsalternative zu Plastik
05.02.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Kiss and Run“ zur Abfallverwertung in der Zelle

14.02.2020 | Biowissenschaften Chemie

Kurze Impulse mit großer Wirkung

14.02.2020 | Biowissenschaften Chemie

ESO-Teleskop sieht die Oberfläche des schwächelnden Beteigeuze

14.02.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics