Artensterben: Vergiftete Ozeane an der Trias-Jura Grenze

Die Vulkane setzten riesige Mengen Schwefeldioxid (SO2) und Kohlendioxid (CO2) frei. Diese verursachten eine Reihe von Umweltstörungen, insbesondere globale Erwärmung und einen Sauerstoffmangel in den Ozeanen. Die dramatischen Änderungen in den Ökosystemen der küstennahen Gewässer belegt jetzt der Nachweis grüner Schwefelbakterien, die Wissenschaftler der Goethe-Universität in 200 Millionen Jahre alten Sedimentproben gefunden haben. Die Ergebnisse sind in der aktuellen Online-Ausgabe von Nature Geoscience publiziert.

Das Artensterben an Land hatte das Team von Dr. Bas van de Schootbrugge vom Institut für Geowissenschaften bereits 2009 untersucht. Tatsächlich führten die Vulkanausbrüche in der nördlichen Hemisphäre zu Waldsterben, worauf sich Farne und andere Pionierpflanzen rasch ausbreiteten. „Die molekularen Überreste der grünen Schwefelbakterien, die wir jetzt in schwarzem Schiefer bei Bohrungen in Norddeutschland und Luxemburg gefunden haben, vermitteln ein düsteres Bild der Küstengewässer unmittelbar nach dem Massensterben“, sagt van de Schootbrugge. Schwefelbakterien gedeihen dort besonders gut, wo reichlich Schwefelwasserstoff vorhanden ist. „Unter diesen Bedingungen vermehrten sich die Bakterien stark. Der Ozean muss im frühen Jura nach faulen Eiern gestunken haben“, erklärt van de Schootbrugge. Damals brach der Urkontinent auseinander und der Atlantische Ozean entstand.

Zeitgleich mit der Vermehrung der grünen Schwefel-Bakterien veränderte sich die Zusammensetzung der Algen-Arten. Algen sind die Grundlage der Nahrungskette im Meer. Durch den Sauerstoffmangel verschob sich das Gleichgewicht dramatisch von roten zu grünen Algen-Arten. Das gleichzeitige Auftreten von grünen Schwefelbakterien und grünen Algen ist eine langfristige Folge hoher CO2-Konzentrationen in der Atmosphäre. Diese führten zu globaler Erwärmung und einer verminderten Wasserzirkulation im Meer. „Die rauen Bedingungen, die nach dem Massensterben in den Küstenregionen herrschten, erklären auch, warum die Lebewesen am Meeresboden so lange brauchten, um sich zu erholen. Beispielsweise gab es im frühen Jura so gut wie keine Korallenriffe. Küstenregionen waren auch damals die hot spots der Biodiversität. Lange, sauerstoffarme Phasen beeinträchtigten ihre Erholung“, so Sylvain Richoz, Leitautor der Studie.

Für unsere Zukunft sind diese Befunde aus der Erdgeschichte insofern relevant, als „Totzonen“– Bereiche, in denen der Ozean keinen Sauerstoff enthält – in letzter Zeit unter dem Einfluss des Menschen zunehmen. Globale Erwärmung und Umweltverschmutzung sind die Hauptursachen. „Besonders beunruhigend ist, dass die Freisetzung großer Mengen CO2 an der Trias-Jura-Grenze so lang anhaltende Effekte auf die Biodiversität der Ozeane hatte“, schließt Sylvain Richoz.

Publikation:
Sylvain Richoz, Bas van de Schootbrugge et al.: Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction, Nature Geoscience, Advanced Online Publication, 12. August 2012, DOI: 10.1038/NGEO1539.

Informationen:
Dr. Bas van de Schootbrugge, Institut für Geowissenschaften, Facheinheit Paläontologie, Campus Riedberg, Tel.: (069) 798-40178; van.de.Schootbrugge@em.uni-frankfurt.de

Dr. Sylvain Richoz, Institut für Erdwissenschaften, Bereich Geologie und Paläontologie, Karl-Franzens-Universität Graz, Tel.: +43 (0) 316 380 5581; sylvain.richoz@uni-graz.at

Media Contact

Ulrike Jaspers idw

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz

Dieser Themenkomplex befasst sich primär mit den Wechselbeziehungen zwischen Organismen und den auf sie wirkenden Umweltfaktoren, aber auch im weiteren Sinn zwischen einzelnen unbelebten Umweltfaktoren.

Der innovations report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Klimaschutz, Landschaftsschutzgebiete, Ökosysteme, Naturparks sowie zu Untersuchungen der Leistungsfähigkeit des Naturhaushaltes.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer