Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aerosole: Dreck in Maßen macht mehr Regen

05.09.2008
Ein internationales Wissenschaftlerteam fasst die gegenläufigen Wirkungen von Aerosolen auf den Niederschlag zusammen

Dürre oder Flut - wie Aerosole beeinflussen, wann, wo, wie viel Regen fällt, haben Wissenschaftler um Meinrat O. Andreae, Direktor am Max-Planck-Institut für Chemie in Mainz, jetzt ergründet. Bislang waren die Antworten auf diese Fragen so vielfältig wie widersprüchlich.

Andreae und seine Mitautoren ziehen nun einen roten Faden durch die teils gegenläufigen Wirkungen der winzigen Partikel auf den Niederschlag. Ihr neuer Ansatz: Sie betrachten, wie Aerosole den Energiefluss in der Atmosphäre und damit die Luftzirkulation, Bildung der Tropfen und ihr Abregnen verändern. Damit räumen sie eines der größten Hindernisse für die Entwicklung genauerer Klimaprognosen aus dem Weg, denn gerade die Rolle der Aerosole war bisher sehr umstritten und sorgte für große Unsicherheiten in den Vorhersagen der Klimaforscher. (Science, 5. September 2008)

Menschen pusten mit ihren Autos, Kraftwerken und Heizungen riesige Mengen an Aerosolen in die Luft. Auch Brandrodungen setzen die Schwebepartikel mit Durchmessern von zum Teil nur wenigen Tausendstel Millimetern und kleiner frei. Vor dem Einfluss des Menschen war die Last der Aerosole in der Luft über Land nur bis zu doppelt so hoch wie über den Meeren, heute ist die Landluft zum Teil hundertmal stärker belastet. Dass natürliche und menschengemachte Aerosole unser Klima beeinflussen, ist unbestritten. Doch wie wirken sie genau? Sie führen zu mehr Wolken und mehr Niederschlag - sagen die Einen. Zu weniger Wolken und weniger Niederschlag, sagen die Anderen. "Recht haben beide Lager", so Meinrat Andreae, Direktor am Max-Planck-Institut für Chemie in Mainz. "Aber es kommt darauf an, wie viele Aerosole es sind. Davon hängt ab, wie sich die Energie verteilt, die gebraucht wird, um Wasser zu verdunsten und Luft zu transportieren."

Wolken und damit Niederschlag entstehen nur, wenn feuchte, warme Luft vom Boden aufsteigt und das Wasser in der Höhe an den Aerosolen kondensiert oder gefriert. "Die Menge der Aerosole steuert, wie die im Endeffekt von der Sonne kommende Energie in der Atmosphäre verteilt wird", so der Erstautor der Studie, Daniel Rosenfeld von der Hebräischen Universität in Jerusalem.

Aerosole wirken zweifach: Zum einen verringern sie wie eine Art Sonnenschirm den Anteil der Sonnenenergie, die den Boden erreicht: Weniger Wasser verdunstet. Außerdem erwärmt sich der Boden nicht so stark und es steigt weniger warme, feuchte Luft auf, die für die Wolkenbildung notwendig ist. In dieselbe Richtung wirken dunkle Rußpartikel aus Waldbränden oder Kohleverbrennung, die Sonnenenergie aufnehmen. Sie erwärmen die Luft um sich herum, so dass Wolkentröpfchen verdunsten anstatt abzuregnen.

Zum anderen können sich ohne Aerosole keine Niederschlagstropfen bilden. Sie geben den Wolken Starthilfe, indem sie der Luftfeuchtigkeit Sammelstellen anbieten, so genannte Kondensationskeime: Diese winzigen Teilchen mit Durchmessern von weniger als einem Tausendstel Millimeter sind notwendiger Ausgangspunkt eines jeden Regentropfens. Die Luftfeuchtigkeit aus der aufsteigenden Luft kondensiert an den Aerosolpartikeln. Dabei wird genau die Wärme frei, die bei der Verdunstung des Wassers benötigt wurde. Sind nur wenige Partikel in der Luft, wachsen die Tropfen so schnell, dass sie abregnen bevor alles Wasser kondensieren kann. Sind viele Sammelstellen vorhanden, bilden sich mehr und dafür kleinere Tropfen, die länger in der Luft schweben. Die Wärmeenergie, die das zusätzliche Wasser beim Kondensieren abgibt, reicht aus, um die Wolken weiter aufsteigen zu lassen und der Prozess setzt sich fort. Es regnet viel. Doch in stark verschmutzter Luft gibt es ein Überangebot an Sammelstellen: Die Tropfen bleiben winzig und erreichen nicht das notwendige Gewicht, um zu fallen. Außerdem streuen die vielen kleine Tröpfchen mit ihrer größeren Gesamtoberfläche mehr Sonnenlicht, was genau wie der Sonnenschirmeffekt die Erdoberfläche kühlt.

"Die Effekte der Aerosole auf die Energie am Boden und auf die Tropfenbildung in der Höhe wurden bisher getrennt betrachtet. Daher waren die Ergebnisse so widersprüchlich, dass das Thema oft beiseite geschoben wurde", so Meinrat Andreae. Der rote Faden, dem das Team jetzt durch das Labyrinth der gegensätzlichen Effekte gefolgt ist, ist der Energiefluss. Mit diesem Ansatz haben die Wissenschaftler die beiden Prozesse in Zusammenhang gebracht. "Wir können jetzt erstmals abschätzen, um wie viel Watt sich die Energie ändert, die für die Zirkulation in der Atmosphäre bereitsteht, wenn sich die Menge der Aerosole ändert", erklärt Meinrat Andreae.

Der Zusammenhang zwischen der Aerosolmenge und Energie in der Atmosphäre, die für die Bildung von Niederschlag zur Verfügung steht, lässt sich mit einer Kurve beschreiben. Zunächst steigt die freigesetzte Energiemenge mit zunehmender Aerosolmenge an, erreicht einen Gipfel und fällt dann stark ab. Vor dem Gipfel der Kurve sorgen mehr Aerosole für mehr Niederschlag, nach dem Gipfel bremsen weitere Aerosole den Niederschlag.

Ihr Maximum erreicht die Kurve bei 1.200 Kondensationskeimen pro Kubikzentimeter Luft - das entspricht dem Volumen eines Stücks Würfelzucker. Bei dieser Konzentration schirmen natürliche und menschengemachte Aerosole zwar etwa ein Fünftel der Sonnenenergie ab, aber die zusätzliche Energie aus Kondensation und Gefrieren gleicht dies aus.

Der Zusammenhang zwischen Energiefluss und Niederschlag erklärt etwa, warum Niederschläge im Amazonas-Regenwald häufig, kurz und dort, wo auch das Wasser verdunstet ist, auftreten. Über dem Gebiet des Regenwaldes ist die Luft sehr sauber. Bei den niedrigen Aerosolkonzentrationen verdunstet zum einen viel Wasser, da viel Sonnenergie den Boden erreicht. Zum anderen können sich nur wenige, dafür aber große Tropfen bilden, die schnell zu Boden fallen. Am Boden steht zwar viel Energie zur Verfügung, aber sie gelangt nicht in die Höhen, in denen sich langlebige Wolken bilden.

Mittlere Aerosol-Konzentrationen verzögern dagegen das Abregnen, da erstens weniger Wasser verdunstet und sich mehr und dafür leichtere Tröpfchen bilden. Diese steigen weiter auf und gelangen in Höhen, in denen die Atmosphäre so kalt ist, dass sie gefrieren. Dabei wird - genau wie beim Kondensieren - Wärme frei. So wird die Luft wieder wärmer und kann weiter aufsteigen. Die an die Aerosole gebundene Feuchtigkeit transportiert also Energie dorthin, wo sich größere Wolken bilden. Dies regt die Zirkulation der Atmosphäre an und es kann mehr Regen fallen, eventuell auch Hagel. Dieser Niederschlag kann auch über längere Strecken transportiert werden, da die Wolken nicht sofort abregnen, sondern erst reifen. Mittlere Aerosolkonzentrationen sorgen für die höchsten Regenfälle, sowie Starkregenereignisse und Stürme, da hier die Energie für Wolkenbildung und Zirkulation am höchsten ist.

Bei sehr hohen Aerosolkonzentrationen wirken sowohl der Sonnenschirmeffekt als auch die Wolkenprozesse abschwächend auf die Zirkulation der Atmosphäre. Zum einen verdunstet weniger Wasser. Zum anderen sind so viele Aerosolpartikel vorhanden, dass sich die wenige Feuchtigkeit stark verteilt: Es entstehen nur winzige Regentropfen und feines Eispulver. Da Mikrotropfen und Pulver zu leicht sind um zu fallen, verdunsten sie nach einer Weile. Dabei entziehen sie der Luft genau die Wärme, die sie beim Kondensieren und Gefrieren freigesetzt haben. Dies lähmt die Zirkulation, da die Luftmassen nicht weiter aufsteigen können. Die Folge: Regen bleibt aus - Dürren werden häufiger.

"Mit diesen Ergebnissen können wir endlich die Auswirkungen von Aerosolen in den Klimamodellen besser vorhersagen. Denn gerade die widersprüchlichen Effekte der Aerosole hindern uns zurzeit daran, genauere Aussagen über die Zukunft des Klimas zu machen", sagt Meinrat Andreae zur Bedeutung der Arbeit.

Hintergrund:

Aerosole entstehen durch natürliche und menschliche Prozesse. Aerosolpartikel können aus Seesalz, Sandstaub, Rußteilchen, Sulfaten und anderen Stoffen organischen und anorganischen Ursprungs bestehen. Zu den natürlichen Prozessen gehören Vulkanausbrüche, manche Waldbrände, Sandstürme und brechende Ozeanwellen, während Verkehr, Brandrodung, Landnutzungsänderungen, und Industrieabgase die wichtigsten menschlichen Quellen darstellen. Nicht alle Aerosolpartikel können als Kondensationskeime dienen, dies hängt unter anderem davon ab, ob sie wasserlöslich sind und wie groß sie sind. Saubere Luft über Land enthält typischerweise etwa 2.000 Partikel pro Kubikzentimeter. Verschmutze Luft über Land enthält circa 10.000, Stadtluft bis zu über 100.000 Partikel pro Kubikzentimeter. In reiner ozeanischer Luft liegen die Werte typischerweise bei 500. Die sauberste Luft findet sich über dem Antarktischen Plateau mit Messungen von nur 43 Partikeln pro Kubikzentimeter.

Originalveröffentlichung:

Daniel Rosenfeld, Ulrike Lohmann, Graciela B. Raga, Coli D. O’Dowd, Markku Kulmala, Sandro Fuzzi, Anni Reissell, Meinrat O. Andreae
Flood or Drought: How Do Aerosols Affect Precipitation?
Science, 5. September 2008

Dr. Christina Beck | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht BAM-Forschungsprojekt will Mikroplastik im Wasser genauer nachweisen
21.06.2018 | Bundesanstalt für Materialforschung und -prüfung (BAM)

nachricht Ausdehnung von Ackerflächen reduziert CO2-Aufnahme
20.06.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Neueste Entwicklungen in Forschung und Technik

25.06.2018 | Veranstaltungen

Wheat Initiative holt Weizenforscher aus aller Welt an einen Tisch

25.06.2018 | Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schnelle Wasserbildung in diffusen interstellaren Wolken

25.06.2018 | Physik Astronomie

Gleisgenaue Positionsbestimmung für automatisierte Bahnanwendungen

25.06.2018 | Informationstechnologie

Neueste Entwicklungen in Forschung und Technik

25.06.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics