Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Absinkende Luftpakete mitverantwortlich für Hitzewellen

08.11.2019

Die Ursachen extremer Hitzeperioden sind Thema des Projekts „Klimawandel und Extremereignisse (ClimXtreme)“, an dem Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) beteiligt sind. Sie untersuchen die Wetter- und Klimaprozesse in der Troposphäre, also in bis zu zehn Kilometern Höhe. Als möglichen Grund für Hitzewellen haben sie vom Atlantik kommende Luftpakete identifiziert, die sich beim Absinken erwärmen. Ziel von ClimXtreme ist es, entsprechende Frühwarnsysteme zu entwickeln. Das Bundesministerium für Bildung und Forschung (BMBF) fördert das Projekt.

„Wir müssen damit rechnen, dass Hitzewellen durch die globale Klimaerwärmung künftig noch häufiger auftreten und intensiver ausfallen“, sagt Professor Andreas Fink vom KIT. Der Meteorologe forscht am Institut für Meteorologie und Klimaforschung – Department Troposphärenforschung (IMK-TRO) des KIT daran, die Vorhersagbarkeit von Hitzewellen zu verbessern.


Im Projekt ClimXtreme gehen Forscherinnen und Forscher den möglichen Ursachen von Hitzewellen nach.

(Foto: Gabi Zachmann, KIT)

„Als Hitzewellen bezeichnen wir Perioden mit mindestens drei aufeinanderfolgenden Hitzetagen.“ Bereits 2003, 2018 und auch in diesem Sommer seien die Auswirkungen der Hitzewellen in Mitteleuropa deutlich spürbar gewesen.

Die hohen Temperaturen und die damit einhergehende Trockenheit machten nicht nur der Natur, zum Beispiel in Form von Waldbränden und Baumsterben, sondern auch den Menschen erheblich zu schaffen. Gesundheitliche Beeinträchtigungen und eine verminderte Lebensqualität seien die negativen Folgen.

Hitzewellen der nächsten Jahrzehnte bisher unterschätzt?

Bei den Forscherinnen und Forschern des KIT steht im Projekt ClimXtreme die Frage im Mittelpunkt, inwieweit die Intensität zukünftiger Hitzewellen wissenschaftlich bislang unterschätzt wurde. Sie untersuchen deshalb, ob und wie weit Hitzeperioden die Erwartungen noch übertreffen werden.

Gingen Klimaforscherinnen und -forscher bislang davon aus, dass heiße Luftmassen aus der Sahara die primäre Ursache für extreme Temperaturwerte seien, zeigen die Ergebnisse des aktuellen Projekts, dass andere atmosphärische Faktoren eine weitaus größere Bedeutung haben als bisher angenommen.

Im Teilprojekt DynProHeat von ClimXtreme analysieren die Wissenschaftlerinnen und Wissenschaftler des KIT Hitzewellen unter einem bislang relativ unerforschten Aspekt. „Unsere Untersuchungen ergaben, dass es für Hitzewellen neben heißer Luft aus dem Süden in Verbindung mit lokal stark ausgetrockneten Böden, noch weitere Gründe gibt“, so Andreas Fink.

Diese sehen er und sein Kollege Professor Joaquim G. Pinto vor allem in Luftpaketen, die vom Atlantik kommen und in einem Sommerhochdruckgebiet über Deutschland aus Höhen von drei bis fünf Kilometern rasch bis in Bodennähe absinken. „Diese Luftpakete werden dabei durch den höheren Luftdruck komprimiert und erwärmen sich“, sagt Fink und nennt als Beispiel eine Luftpumpe, bei der ebenfalls Luft mittels Druck erwärmt wird.

„Bei anderen Luftpaketen erfolgt dieser Absink- und Erwärmungsprozess einige Tage vorher südlich oder östlich von Deutschland. Diese Luftpakete werden in der Folge im Hochdruckgebiet bodennah nach Deutschland geführt und erwärmen sich dabei durch die starke tägliche Sonneneinstrahlung weiter.“

Der Weg, den ein solches Luftpaket zurücklege, lasse sich mit meteorologischen Diagnoseverfahren und verbesserten Daten immer genauer nachverfolgen.

Ziel: Bessere Prognosen von Hitzewellen

„Da die Klimaforschung diese Erwärmungsmechanismen bisher weitgehend außer Acht gelassen hat, erhoffen wir uns, dass durch deren Studium sowohl eine Verbesserung der Prognose von Hitzewellen in Wettervorhersagen für bis zu drei Wochen als auch eine genauere Projektion der extremsten Hitzewellen der nächsten Jahrzehnte möglich wird“, so Fink.

Mit den neuen Erkenntnissen in letztgenannter Hinsicht erhöhe sich auch der Druck auf die Stadtplaner in Deutschland. „Langfristig ist eine ‚hitzeresistente‘ Stadtplanung unumgänglich“, sagt er. Dies betreffe zum Beispiel das Offenhalten von Ventilationsschneisen in der Bebauung und mehr kühlendes Stadt- und Dachgrün.

Selbst weiße Hausfassaden, wie zum Beispiel aus Griechenland bekannt, seien denkbare Maßnahmen zur Abmilderung der stärksten Hitzeetage der Zukunft, so der Klimaforscher.

Details zum KIT-Zentrum Klima und Umwelt: http://www.klima-umwelt.kit.edu

Bildunterschrift: Im Projekt ClimXtreme gehen Forscherinnen und Forscher den möglichen Ursachen von Hitzewellen nach (Foto: Gabi Zachmann, KIT)

Weiterer Kontakt:
Sarah Werner, Redakteurin/Pressereferentin, Tel.: +49 721 608-21170, E-Mail: sarah.werner@kit.edu

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 25 100 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen.

Diese Presseinformation ist im Internet abrufbar unter: http://www.sek.kit.edu/presse.php

Wissenschaftliche Ansprechpartner:

Sarah Werner, Redakteurin/Pressereferentin, Tel.: +49 721 608-21170, E-Mail: sarah.werner@kit.edu
http://www.klima-umwelt.kit.edu

Weitere Informationen:

http://www.sek.kit.edu/presse.php
http://sarah.werner@kit.edu

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Attraktive eingeschleppte Arten haben es leichter
06.04.2020 | Universität Wien

nachricht Wo bleibt das Plastik im Ozean?
30.03.2020 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungsnachrichten

Wenn Ionen an ihrem Käfig rütteln

06.04.2020 | Energie und Elektrotechnik

Virtueller Roboterschwarm auf dem Mars

06.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics