Aktivierung epigenetisch stillgelegter Gene durch Kombination von epigenetischen Modifikatoren und TALEs

Eine an der Ludwig-Maximilians-Universität München (LMU) entwickelte Methode ermöglicht es, epigenetisch stillgelegte Gene wieder zu aktivieren. Wissenschaftler der LMU haben nun eine Methode entdeckt, mit der man Methylgruppen gezielt in bestimmten Bereichen der DNA abschneiden und auf diese Weise epigenetisch stillgelegte Gene wieder aktivieren kann. Können bekannte Transkriptionsfaktoren (ein an die DNA bindendes Protein, das über einen Promotor ein Gen einschaltet) wie TALEs oder Zinc-fingers bereits an bestimmte Genabschnitte der DNA andocken, gelang dies bei epigenetisch stillgelegten Gensequenzen bislang nicht. Dieses Problem wurde nun durch die Zugabe von Valpoinsäure (VPA 10) und einem HDAC-Inhibitor gelöst. Durch diese Maßnahme gelang es, die Verpackung der epigenetisch stillgelegten Gensequenzen, bestehend aus HDAC (Histondeacetylasen), quasi zu öffnen und für die Transkriptionsfaktoren zugänglich zu machen.

Weitere Informationen: PDF

Bayerische Patentallianz GmbH
Tel.: +49 89 5480177-0

Ansprechpartner
Peer Biskup

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

Alle Nachrichten aus der Kategorie: Technologieangebote

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer