Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wettbewerb schiebt in Netzwerken das Wachstum an

17.01.2011
Netzwerke können sich sprunghaft vergrößern, wenn einzelne neue Verbindungen hinzu kommen

Eine einzige neue Verbindung kann die Größe eines Netzwerkes dramatisch erhöhen – ganz gleich, ob es sich bei dieser Verbindung um einen zusätzlichen Link im Internet, eine neue Bekanntschaft im Freundeskreis oder eine weitere Verknüpfung zwischen zwei Nervenzellen im Gehirn handelt.

Zu diesem Ergebnis kommen Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS), des Bernstein Center for Computational Neuroscience Göttingen und der Universität Göttingen. In der Fachzeitschrift Nature Physics legen die Forscher jetzt eine theoretische Studie vor, die erstmals den Einfluss einzelner zusätzlicher Verknüpfungen in einem Netzwerk mathematisch beschreibt. (Nature Physics, online veröffentlicht am 16.1.11)

Im Sportverein lernt man einen neuen Mitspieler kennen und verabredet sich am nächsten Wochenende zum gemeinsamen Kinobesuch. Der neue Spieler bringt drei Freunde zur Verabredung mit – und schon hat sich der eigene Bekanntenkreis durch nur einen neuen Kontakt um vier Personen vergrößert. Wachstumsprozesse dieser Art treten in vielen Netzwerken auf: Nervenzellen im Gehirn knüpfen ständig neue Verbindungen, Webseiten verlinken aufeinander und ein Flugreisender mit Grippe baut durch seine Zwischenstopps nach und nach ein Netzwerk infizierter Orte auf. Aus Sicht der Wissenschaft sind solche Vergrößerungsprozesse noch recht unerforscht: Wie verändert sich ein Netzwerk, wenn einzelne Verbindungen dazukommen? Und wie schnell kann ein Netzwerk dadurch an Größe zulegen?

Um diese Fragen zu beantworten, haben die Göttinger Wissenschaftler das Wachstum von Netzwerken Verbindung für Verbindung verfolgt. Eine neue Verknüpfung kann dabei jedoch nicht nur ein einzelnes neues Element ins Spiel bringen, sondern auch (wie im Beispiel des neuen Mitspielers im Sportverein) das Ausgangsnetzwerk mit einem weiteren vereinen. Zudem konzentrierten sich die Forscher auf eine spezielle Form des Wachstums, die eine Art Konkurrenz zwischen möglichen Verbindungen ins Spiel bringt: Stehen mehrere neue Verbindungen zur Auswahl, kommt nur diejenige zustande, die insgesamt das kleinste Netzwerk erzeugt (siehe Abbildung 1). „Es gibt Hinweise darauf, dass sich wachsende Netzwerke aus Nervenzellen bevorzugt zunächst zu kleinen Gruppen zusammenschließen und somit grob dem Wachstumsprozess folgen, den wir betrachtet haben“, sagt Jan Nagler von der Universität Göttingen und vom MPIDS.

Die Situation ist vergleichbar mit der in einem Feriencamp für Kinder, dessen Teilnehmer sich zu Beginn der Ferien alle untereinander nicht kennen. Typischerweise werden sich die Kinder zunächst in kleinen Gruppen und Paaren zusammenschließen. Will ein solches Paar nun das Netzwerk seiner Freundschaften innerhalb des Systems „Feriencamp“ vergrößern, wird es mit hoher Wahrscheinlichkeit wiederum zurückhaltend vorgehen: Es wird zunächst ein weiteres Paar oder eine kleine Gruppe ansprechen, nicht aber auf eine große Clique zusteuern. Zu Beginn der Ferien wachsen die einzelnen Netzwerke auf diese Weise zunächst nur langsam. Gegen Ende kennen sich dann alle Kinder: Das Netzwerk hat seine maximal mögliche Größe erreicht und verbindet alle Elemente des Systems.

„In unserer Studie haben wir vor allem die Übergangsphase untersucht, also die Wachstumsphase zwischen den vereinzelt verknüpften Elementen zu Beginn und dem vollständig verbundenen Gesamtsystem am Ende“, erklärt Marc Timme, Leiter der Max-Planck-Forschergruppe „Netzwerk-Dynamik“ am MPIDS. Wie schließen sich die zahlreichen kleinen Netzwerke zu einem zusammen? Entstehen mehrere große Netzwerke parallel oder entwickelt sich ein dominantes Netzwerk, das alle anderen überragt? Neben Computersimulationen gelang es den Göttinger Wissenschaftlern erstmals, mathematische Formeln herzuleiten, welche die Netzwerkentwicklung in dieser Übergangsphase Verbindung für Verbindung beschreiben.

Die Forscher fanden, dass ab einer bestimmten Anzahl neuer Verbindungen ein plötzlicher Wachstumsschub auftritt: Die Größe des größten Netzwerkes im System nimmt dramatisch zu. „Bezogen auf die Systemgröße ist dieser Sprung in kleinen Systemen dramatischer als in großen“, erklärt Nagler. Doch selbst bei Systemen, die sich aus einer gewaltigen Anzahl von Elementen zusammensetzen – vergleichbar etwa mit der Anzahl der Neuronen im Gehirn – kann sich die Größe des größten Netzwerkes sogar verdoppeln. „Auf diese Weise entstehen innerhalb eines Systems zunächst viele Netzwerke etwa derselben Größe“, so Timme. Erst spät entsteht so ein dominantes allumspannendes Netzwerk.

In einem nächsten Schritt wollen die Forscher nun identifizieren, welche Formen des Wettbewerbs zwischen möglichen Links in natürlichen Systemen aus Biologie und Physik ein solch schnelles Wachstum ermöglichen, und versuchen zu klären, welche Auswirkungen die Wachstumsschübe haben.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Neue internationale Studie: Immuntherapie für Kinder mit akuter Leukämie
13.07.2018 | Universitätsklinikum Schleswig-Holstein

nachricht Sicherer Auto fahren ohne Grauen Star: Geringeres Unfallrisiko nach Linsenoperation
12.07.2018 | Deutsche Ophthalmologische Gesellschaft

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vertikales Begrünungssystem Biolit Vertical Green<sup>®</sup> auf Landesgartenschau Würzburg

16.07.2018 | Architektur Bauwesen

Feinstaub macht Bäume anfälliger gegen Trockenheit

16.07.2018 | Biowissenschaften Chemie

Wie Krebszellen Winterschlaf halten

16.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics