Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selbstorganisierter Bewegungskreislauf ermöglicht Zellen, komplexe Suchmuster zu formen

07.05.2019

Forscher des Exzellenzclusters „Cells in Motion“ der Universität Münster haben entdeckt, dass Membrankrümmungen von Zellen einen Bewegungskreislauf in Gang setzen. Dadurch können sich Zellen über längere Distanz in die gleiche Richtung bewegen und Suchmuster formen. Die Studie ist in der Fachzeitschrift „Nature Physics“ erschienen.

Setzt man eine Zelle auf einen ebenen Untergrund, dann bleibt sie nicht reglos liegen, sondern sie setzt sich in Bewegung. Das beobachtete bereits im Jahr 1967 der britische Zellbiologe Michael Abercrombie bei Zellen des Bindegewebes. Seitdem versuchen Forscher zu verstehen, wie Zellen dies bewerkstelligen.


Eine Zelle bewegt sich vorwärts: Dort, wo sich ihre Scheinfüßchen krümmen, lagern sich IBAR-Proteine (pink) an. Dadurch kann die Zelle das Protein Aktin (grün) lokal aufbauen und Scheinfüßchen bilden.

Isabell Begemann, Milos Galic

Bekannt ist: Zellen bilden „Scheinfüßchen“, also Ausstülpungen, die kontinuierlich auswachsen und sich zurückziehen. Damit halten sie sich am Boden fest und ziehen sich vorwärts. Die Richtung, in die sich eine Zelle bewegt, wird in der Regel von chemischen Lockstoffen bestimmt, die von anderen Zellen produziert und abgesondert werden.

Wenn solche externen Signale fehlen – wie bei den von Abercrombie beobachteten Zellen – begeben sich Zellen auf die Suche. Hierbei verwenden sie Suchmuster, die sich ähnlich auch bei Haien, Bienen oder Hunden beobachten lassen.

Sie bewegen sich ein Stück in eine Richtung, bleiben stehen, bewegen sich eine Weile auf der Stelle und wandern in eine andere Richtung weiter. Aber wie schaffen Zellen es, ihre Bewegungsrichtung über einen längeren Zeitraum beizubehalten?

Forscherinnen und Forscher des Exzellenzclusters „Cells in Motion“ der Westfälischen Wilhelms-Universität Münster (WWU) haben jetzt einen Baustein der Antwort auf diese Frage entschlüsselt.

Sie entdeckten, dass Krümmungen der Zellmembran der Geburtspunkt für einen Bewegungskreislauf sind: Durch mechanische Kräfte, die die Krümmung der Zellmembran bewirken, versammeln sich bestimmte Proteine, die diese Geometrie erkennen.

Diese Proteine wiederum ermöglichen es der Zelle, Scheinfüßchen zu bilden, die sich beim Zurückziehen wieder krümmen. „Am Ansatz der Krümmung ist der Punkt für das Auswachsen des nächsten Scheinfüßchens bereits vorgegeben. Auf diese Weise reaktiviert sich der Mechanismus ständig selbst“, erklärt der Biologe Dr. Milos Galic, Nachwuchsgruppenleiter am Exzellenzcluster und Leiter der Studie.

Wenn externe Signale fehlen, tritt eine Zelle somit nicht auf der Stelle, sondern kann sich über längere Distanz in eine Richtung bewegen und ihre Umgebung effizient absuchen. Die Studie ist in der Fachzeitschrift „Nature Physics“ erschienen.

Methoden und weitere Ergebnisse

Ausgangspunkt für die Studie war eine überraschende Beobachtung bei der Analyse mikroskopischer Bilder: Die Forscher untersuchten, wie Zellen Scheinfüßchen bildeten und sich Zellbewegung und Zellform daraufhin veränderten. Dabei entdeckten sie, dass die Scheinfüßchen in ganz unterschiedlichen Größen und mit ganz unterschiedlicher Lebensdauer auswuchsen.

„Wir konnten in den Daten keine eindeutigen wiederkehrenden Muster beim Auswachsen und Zurückziehen der Scheinfüßchen erkennen“, sagt Biologin Dr. Isabell Begemann, die die Studie als Erstautorin und im Rahmen ihrer Doktorarbeit durchführte.

Was die Forscher aber sehen konnten und was auch andere Arbeitsgruppen bereits beobachtet hatten: Neue Scheinfüßchen entstanden immer dort, wo sich die Zellmembran stark krümmte. Die Forscher vermuteten deshalb, dass es ein mit diesen Krümmungen zusammenhängender Mechanismus sein muss, der es einer Zelle ermöglicht, die kontinuierlichen Bewegungszyklen auszuüben und sich somit fortzubewegen.

Um dieser Idee auf den Grund zu gehen, arbeiteten Biologen, Biochemiker und Physiker eng zusammen. Sie entwickelten zunächst Biosensoren, um die gekrümmten Stellen der Zellmembran markieren und mit hochauflösender Mikroskopie sichtbar machen zu können.

Dazu verbanden sie fluoreszierende Moleküle mit sogenannten IBAR-Domänen. Dies sind bananenförmige Bestandteile von Proteinen, die sich mit ihrer positiv geladen Seite an die negativ geladene Zellmembran binden – allerdings nur dann, wenn die Membran gekrümmt ist.

Mithilfe dieser Biosensoren konnten die Forscher nachweisen: Durch die Krümmung der Zellmembran, die beim Zurückziehen des Scheinfüßchens entsteht, lagern sich die krümmungssensitiven Proteine dort an. Diese Proteine wiederum regulieren dann Kräfte in der Zelle, durch die die Zelle das Protein Aktin lokal anreichert, was zum erneuten Auswachsen der Scheinfüßchen führt.

In einem weiteren Schritt entwickelten die Forscher ein mathematisches Modell, mit dem sie den Mechanismus beschreiben, am Computer simulieren und dabei einzelne Parameter verändern konnten. Vergleiche der Vorhersagen durch das mathematische Modell mit der Analyse der Bilddaten aus dem Labor bestätigten die bisherigen Ergebnisse.

Die Forscher untersuchten den Bewegungsmechanismus in Zellkulturmodellen, beispielsweise bei Zellen des Bindegewebes der Maus und bei menschlichen Blutgefäßzellen aus der Nabelschnur, aber auch bei menschlichen Immunzellen – also einer Zellart, die sich im Organismus tatsächlich frei bewegt. Schließlich wollten die Forscher noch wissen, welche Auswirkungen der von ihnen entdeckte Mechanismus auf das Bewegungsmuster einer Zelle hat.

„Wir haben die IBAR-Proteine herunterreguliert und so das Selbstorganisationssystem der Zelle ‚gehackt‘“, sagt Milos Galic. Das Ergebnis: Fehlt der Mechanismus, schafft die Zelle es zwar immer noch, sich zu bewegen, aber die Zeit, in der sie geradeaus läuft, ist deutlich kürzer.

Parallel zu dem Mechanismus greifen natürlich noch weitere Maschinerien, dennoch hat er deutlichen Einfluss auf das Bewegungsmuster einer Zelle. Die Ergebnisse der Studie könnten zukünftig dazu beitragen, weitere grundlegende Fragen zu Vorgängen in Organismen zu beantworten, in die freibewegliche Zellen involviert sind.

Förderung:

Die Studie erhielt finanzielle Unterstützung durch den Exzellenzcluster „Cells in Motion“ der WWU, durch zwei von der Deutschen Forschungsgemeinschaft geförderte Sonderforschungsbereiche – den SFB 1348 „Dynamische zelluläre Grenzflächen: Bildung und Funktion“ der WWU und den SFB 994 „Physiologie und Dynamik zellulärer Mikrokompartimente“ der Universität Osnabrück – sowie durch die Medizinische Fakultät der WWU.

Wissenschaftliche Ansprechpartner:

Dr. Milos Galic
Tel: +49(0)251 83-51040
Email: galic@uni-muenster.de

Originalpublikation:

I. Begemann et al. (2019): Mechanochemical self-organization determines search pattern in migratory cells. Nature Physics; epub: 6 May 2019. DOI: 10.1038/s41567-019-0505-9

Weitere Informationen:

https://www.uni-muenster.de/Cells-in-Motion/de/index.html Bewegtbild zum Thema auf der Webseite des Exzellenzclusters "Cells in Motion"


https://www.nature.com/articles/s41567-019-0505-9 Originalpublikation in "Nature Physics"

Doris Niederhoff | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Blinddarmentzündungen bei Kindern: Ultraschall als erstes Mittel zur exakten Diagnose
28.11.2019 | Deutsche Gesellschaft für Ultraschall in der Medizin (DEGUM)

nachricht Biologen der TU Dresden untersuchen Spermienqualität anhand ihres Stoffwechsels
28.11.2019 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das feine Gesicht der Antarktis

Eine neue Karte zeigt die unter dem Eis verborgenen Geländeformen so genau wie nie zuvor. Das erlaubt bessere Prognosen über die Zukunft der Gletscher und den Anstieg des Meeresspiegels

Wenn der Klimawandel die Gletscher der Antarktis immer rascher Richtung Meer fließen lässt, ist das keine gute Nachricht. Denn dadurch verlieren die gefrorenen...

Im Focus: Virenvermehrung in 3D

Vaccinia-Viren dienen als Impfstoff gegen menschliche Pockenerkrankungen und als Basis neuer Krebstherapien. Zwei Studien liefern jetzt faszinierende Einblicke in deren ungewöhnliche Vermehrungsstrategie auf atomarer Ebene.

Damit Viren sich vermehren können, benötigen sie in der Regel die Unterstützung der von ihnen befallenen Zellen. Nur in deren Zellkern finden sie die...

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Titin in Echtzeit verfolgen

13.12.2019 | Biowissenschaften Chemie

LogiMAT 2020: Automatisierungslösungen für die Logistik

13.12.2019 | Messenachrichten

Das feine Gesicht der Antarktis

13.12.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics