Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneller bremsen mit Gehirnwellen

15.08.2011
In einer neuen Studie identifizieren Forscher die Bremsabsicht von Autofahrern in Gehirnwellen

Zwischen dem Erkennen einer Notfallsituation beim Autofahren bis zur tatsächlichen Bremsung vergehen kostbare Sekunden und Millisekunden, die dafür entscheidend sein können, ob es zu einem Unfall kommt.

Wie sich diese kritische Zeit verkürzen lässt, haben TU-Wissenschaftler bei einem Experiment demonstriert. Dafür wurden die Hirnströme von Probanden im Fahrsimulator aufgezeichnet und die Bremsabsicht des Fahrers durch Sensoren am Kopf gelesen, bevor er auf das Bremspedal tritt. Das Ergebnis: Eine schnellere Bremsung kann ermöglicht und Autounfälle können verhindert werden.

Die TU-Forscher führten gefährliche Situationen im Fahrsimulator herbei, die eine Notbremsung erfordern, und analysierten die dabei auftretenden Gehirnstrommuster mittels Elektroenzephalographie (EEG), das heißt mit am Kopf angebrachten Elektroden. Weiterhin wurde die Muskelaktivität des rechten Schienbeines durch Elektromyographie (EMG) erfasst sowie Bewegungen der Gas- und Bremspedale. Es stellte sich heraus, dass die Bremsabsicht des Fahrers etwa 130 Millisekunden früher vorhergesagt werden kann, wenn typische EMG- und (vor allem) EEG-Muster zusätzlich zu den Informationen von den Pedalsensoren berücksichtigt werden. Damit verkürzt sich der Bremsweg bei einer Fahrgeschwindigkeit von 100 Kilometern in der Stunde um 3,66 Meter – das entspricht einer Wagenlänge.

Wissenschaftler der Technischen Universität Berlin erstellten die Studie „EEG potentials predict upcoming emergency brakings during simulated driving“ in Zusammenarbeit mit der Charité Universitätsmedizin und dem Fraunhofer Institut FIRST und veröffentlichten die Forschungsergebnisse in der Publikation „Journal of Neural Engineering“.

Zukünftige Entwicklung
Haupt-Autor Stefan Haufe vom Fachgebiet Maschinelles Lernen an der TU Berlin und seine Kollegen setzen mit dieser Forschungsarbeit sehr früh in der Reaktionskette einer drohenden Unfallsituation an. Bisherige Systeme zur Fahrassistenz überwachen zum Beispiel per Laserstrahl den Abstand zum voranfahrenden Auto und lösen eine Notbremsung aus, sobald der Fahrer das Bremspedal antippt. Das „Gedankenlesen“, beziehungsweise die EEG-basierte Erkennung der Bremsintention, greift dem voraus und könnte einen schnelleren Bremsassistenten ermöglichen.

„Im nächsten Schritt muss getestet werden, ob unser System auch online in einem echten Auto funktioniert. Um kommerziell einsetzbar zu sein, müsste die Technologie allerdings auch noch wesentlich praktikabler werden“, sagt Stefan Haufe. Momentan bauchten die EEG-Elektroden nämlich Gel: dies sei aufwändig im Gebrauch und hinterlasse Rückstände in den Haaren, so der Wissenschaftler. Doch die Lösungen sind in Sicht: „Es gibt erste ‚trockene‘ Elektroden. Gleichzeitig schreitet die Miniaturisierung der Elektroden und die Entwicklung von drahtlosen Systemen voran. So könnte unser System in einigen Jahren als Ergänzung bestehender Fahrassistenzsysteme eingeführt werden.“

Das Experiment
Für die Untersuchung saßen die Probanden in einem Fahrsimulator mit Lenkrad, Bremse und Gaspedal. Auf einem Bildschirm anstelle der Windschutzscheibe waren Bilder einer Autofahrt aus der Ich-Perspektive zu sehen. Die Versuchspersonen hatten die Aufgabe, bei einer Geschwindigkeit von 100 Kilometern in der Stunde einen Abstand von 20 Metern zu dem vorausfahrenden Computer-gesteuerten Fahrzeug einzuhalten (der allgemein empfohlene Sicherheitsabstand läge bei 50 Metern), während sie mit gefährlichen Kurven und dichtem Gegenverkehr umzugehen hatten. In unregelmäßigen Abständen bremste das vorausfahrende Auto unerwartet und seine Bremsleuchten blitzten auf. Die Wissenschaftler verglichen die Reaktionszeiten von physiologischen Indikatoren (EEG- und EMG-Muster) mit denen, die aus dem Verhalten des Fahrers (dem schnellen Loslassen des Gaspedals und dem darauffolgenden Betätigen der Bremse) ablesbar sind.

Eine solche Untersuchung im Fahrsimulator können Sie sich hier als Film ansehen: www.youtube.com/watch?v=kkKoMQwQ0yA

Die Studie zum Download: http://iopscience.iop.org/1741-2552/8/5/056001

Weitere Informationen erteilt Ihnen gern: Stefan Haufe, TU Berlin, Fakultät IV Elektrotechnik und Informatik, Fachgebiet Maschinelles Lernen, Tel.: 030/314-78626, -28678, E-Mail: stefan.haufe@tu-berlin.de

Die Medieninformation zum Download:
www.pressestelle.tu-berlin.de/medieninformationen/
„EIN-Blick für Journalisten“ – Serviceangebot der TU Berlin für Medienvertreter:
Forschungsgeschichten, Expertendienst, Ideenpool, Fotogalerien unter:
http://www.pressestelle.tu-berlin.de/?id=4608

Stefanie Terp | idw
Weitere Informationen:
http://www.tu-berlin.de
http://www.youtube.com/watch?v=kkKoMQwQ0yA
http://iopscience.iop.org/1741-2552/8/5/056001

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Grundlagen der Blockchain-Technologie in der Energiewirtschaft
27.07.2018 | Forschungsstelle für Energiewirtschaft e.V.

nachricht Studie zu Werkstoffprüfung: Schäden in nichtmagnetischem Stahl mit Magnetismus aufspüren
23.07.2018 | Technische Universität Kaiserslautern

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Macht Sinn: Fraunhofer entwickelt Sensorsystem für KMU

15.08.2018 | Energie und Elektrotechnik

Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

15.08.2018 | Informationstechnologie

FKIE-Wissenschaftler präsentiert neuen Ansatz zur Detektion von Malware-Daten in Bilddateien

15.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics