Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reise ins Weltall führt zu brüchigen Knochen

30.01.2009
Fitness-Gerät in der Raumstation soll Gesundheit der Astronauten verbessern

Monatelanger Aufenthalt im All geht an Astronauten nicht spurlos vorüber. Eine Untersuchung von 13 Weltraumfahrern nach ihrer Rückkehr von halbjährigen Aufenthalt auf der Internationalen Raumstation ISS hat eine um bis zu 30 Prozent schlechtere Knochenmasse am Hüftbein gezeigt.

Die Schädigung der Knochen liegt demnach deutlich über dem Wert, der in früheren Untersuchungen ermittelt wurde, und kommt sogar dem von älteren Frauen mit Osteoporose gleich. "Ohne besondere Vorkehrungen bedeutet das für Astronauten Jahrzehnte nach ihrer Raummission ein höheres Knochenbruch-Risiko", sagt Joyce Keyak, Studienleiterin der University of California in Irvine. In Berlin wird derzeit ein Trainingsgerät entwickelt, das diese Gesundheitsrisiken bei längeren Expeditionen im All verringern soll.

"Astronauten müssen nach ihrem ISS-Aufenthalt aus der Raumfähre getragen werden. Sie können nicht laufen und brauchen lange Zeit, um ihr Defizit wieder aufzuholen", sagt Dieter Felsenberg, Leiter des Zentrums für Muskel- und Knochenforschung an der Charité-Universitätsmedizin, im pressetext-Interview. "Der Knochen passt sich immer an die Spitzenkraft an, die auf ihn wirkt. Wird er aufgrund der Schwerelosigkeit kaum benutzt, führt das zu seinem Abbau.

Dieser kann bis zu 70 Prozent betragen, insbesondere wenn die Astronauten länger im All unterwegs sind." Im Auftrag der europäischen Raumfahrtsbehörde ESA untersucht der Berliner Radiologe, wie der menschliche Körper auf 60 Tage Bewegungslosigkeit im Bett reagiert. "Diese Inaktivität im Liegen ist durchaus mit der Schwerelosigkeit vergleichbar. Dennoch werden im Bett die Muskeln mehr beansprucht, da die Beine ja gehoben werden können", so Felsenberg.

Nach einer Weltraummission müssen Astronauten darauf achten, verlorene Knochen- und Muskelmasse wieder zu erlangen. "Studien haben gezeigt, dass Training den etwa 4-prozentigen Knochenverlust von zwei Monaten Bettlägerigkeit innerhalb eines Jahres auf 1,5 Prozent senken kann." Für längere Vorhaben wie zukünftige Marsexpeditionen sei das jedoch nicht ausreichend. "Eine Reise bis zum Mars, die neun bis zwölf Monate dauert, bedeutet einen erheblichen Verlust von Knochen und Muskeln. Wenn die Astronauten an den Mars gelangen, könnten sie sich dort nicht frei bewegen. Schon ein kleines Stolpern würde ein großes Risiko für einen Knochenbruch bedeuten", erklärt der Berliner Radiologe.

Als Beitrag zur Lösung dieses Problems entwickelte Felsenberg mit seinem Team das Trainingssystem Galileo. "Es handelt sich dabei um ein Vibrations-Wiederstandsgerät, das durch Vibrationen mit hoher Frequenz Dehnung und Kontraktion der Muskeln hervorruft."

Den Simulationstest in der Schwerelosigkeit habe Galileo bereits bestanden. Bevor es tatsächlich im Weltall als Fitnessgerät zum Einsatz kommt, müsse das Gewicht von derzeit 22 Kilogramm aufgrund der Transportkosten noch weiter reduziert werden. "Außerdem müssen wir noch eine Lösung für die Fixierung finden, die die Vibration nicht an die Umgebung überträgt. Das hätte für die Raumstation fatale Folgen", so der Berliner Radiologe abschließend zu pressetext.

Johannes Pernsteiner | pressetext.deutschland
Weitere Informationen:
http://www.uci.edu
http://www.charite.de/zmk

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Massenverlust des Antarktischen Eisschilds hat sich beschleunigt
14.06.2018 | Technische Universität Dresden

nachricht Teure Flops: Nur 5% der Innovationsideen werden erfolgreich
12.06.2018 | Institut für angewandte Innovationsforschung e.V.

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics