Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekül entscheidet über Freundschaften

19.07.2016

Unbekannte Menschen zu treffen kann herausfordernd, aber auch bereichernd sein. Am Max-Planck-Institut für Psychiatrie konnten Forscher nachweisen, dass ein Molekül, das für die Regulation von Stress im Gehirn verantwortlich ist, auch bestimmt, ob wir bereit sind, neue soziale Kontakte zu knüpfen oder ob wir lieber in der Sicherheit unseres bestehenden sozialen Umfelds verharren. Darüber berichtet das angesehene Fachmagazin „Nature Neuroscience“.

Wissenschaftler des Max-Planck-Instituts für Psychiatrie weisen nach, wie ein Molekül im Gehirn das Verhalten von Mäusen beeinflusst. In ihren Experimenten mit den Tieren identifizierten sie einen Stressmechanismus, der als eine Art „sozialer Schalter“ agiert: Er brachte Mäuse dazu, entweder die Beziehungen mit „Freunden“ und „Bekannten“ zu intensivieren oder sie einzuschränken und stattdessen den Kontakt zu „Fremden“ zu suchen.


Neue Freunde finden oder nicht? Molekül bestimmt mit

MPI / Yonatan Popper

Menschen verarbeiten Stress im Gehirn mithilfe eines ähnlichen Systems. Deshalb dürfte der gleiche Mechanismus bei Menschen den Umgang mit sozialen Herausforderungen regulieren. Störungen dieses Mechanismus könnten verantwortlich für Schwierigkeiten im Sozialverhalten bei Patienten sein, die an Angststörungen, Autismus, Schizophrenie oder ähnlichen Erkrankungen leiden.

Prof. Dr. Alon Chen, Direktor am Max-Planck-Institut für Psychiatrie, verantwortet die Studie, durchgeführt wurde sie von Dr. Yair Shemesh sowie Dr. Oren Forkosh in Kooperation mit dem Weizman Institut in Israel. „Die meisten unserer sozialen Kontakte bedeuten auch ein gewisses Maß an Stress, selbst wenn wir Menschen treffen, die wir gut kennen. Denken Sie nur an Familienfeste“, erläutert Shemesh.

„Von der Evolution her betrachtet, ist eine gewisse Zurückhaltung wichtig für erfolgreiches soziales Verhalten“, fährt der israelische Wissenschaftler fort. Chen fügt hinzu: „In praktisch jedem sozialen Umfeld gibt es Interessenkonflikte. Das Individuum muss sich deshalb sozial adäquat verhalten und abwägen zwischen eigenen Interessen und den Erwartungen anderer.“

Um herauszufinden, wie Mäuse sich im Kontakt mit Artgenossen verhalten, installierten die Wissenschaftler für ihre Studie zwei verschiedene Versuchsaufbauten. Im „sozialen Labyrinth“ konnten Mäuse wählen, ob sie durch einen Maschendraht Kontakt mit vertrauten oder fremden Mäusen aufnehmen oder ob sie Kontakt generell vermeiden.

Im anderen Versuchsaufbau konnten die Mäuse sich frei in der Gruppe bewegen. Ihre Bewegungen wurden dabei durch Videokameras mit einem eigens dafür programmierten Computerprogramm aufgezeichnet und analysiert. Dieser einzigartige Versuchsaufbau ermöglichte es, die Mäuse der zweiten Gruppe über mehrere Tage bei verschiedenen Arten sozialer Interaktion wie Annäherung, Kontakt, Angriff oder Verfolgung kontinuierlich zu beobachten.

Die Wissenschaftler zeigten, dass ein molekularer Mechanismus im Gehirn der Mäuse, der an der Stressregulation beteiligt ist, auch das Verhalten von Mäusen gegenüber Artgenossen bestimmt. Ein Signale übermittelndes Molekül, das Urocortin-3, und ein Rezeptor auf der Oberfläche von Nervenzellen, an den das Molekül bindet, sind Teil dieses Mechanismus. Beide sind wiederum Teile des Corticotropin-ausschüttenden Faktors beziehungsweise des sogenannten CRF-Systems, das beim Umgang mit Stress eine zentrale Rolle spielt. Beide kommen überwiegend in der Gehirnregion der mittleren Amygdala vor, die mit sozialem Verhalten von Mäusen in Zusammenhang gebracht wird.

Mäuse, die hohe Urocortin-Spiegel im Blut aufwiesen, suchten aktiv den Kontakt zu Mäusen, die sie nicht kannten. Dabei ignorierten sie sogar ihre eigene Gruppe. Wenn die Aktivität des Urocortin-3 aber unterbunden wurde, hatten die Mäuse fast nur Sozialkontakte innerhalb ihrer eigenen Gruppe und vermieden Kontakte mit unbekannten Tieren.

Der israelische Wissenschaftler Forkosh fasst zusammen: „In freier Wildbahn leben Mäuse in Gruppen. Ihr Verhalten innerhalb der Gruppe unterscheidet sich von ihrem Verhalten gegenüber Eindringlingen. Deshalb ist es sinnvoll, dass ein und derselbe Mechanismus im Gehirn Einfluss auf zwei verschiedene Arten sozialen Verhaltens nehmen kann. Dieser Mechanismus könnte bei Menschen auftreten, wenn sie zum Beispiel überlegen, bei den Eltern auszuziehen, sich scheiden zu lassen oder den Job beziehungsweise die Wohnung zu wechseln.“

Anke Schlee | Max-Planck-Institut für Psychiatrie

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Ernährung kann innere Uhr und hormonelle Reaktionen beeinflussen
07.11.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Kopieren Pferde das Verhalten von Menschen?
30.10.2019 | Hochschule für Wirtschaft und Umwelt Nürtingen-Geislingen

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: REANIMA - für ein neues Paradigma der Herzregeneration

Endogene Mechanismen der Geweberegeneration sind ein innovativer Forschungsansatz, um Herzmuskelschäden zu begegnen. Ihnen widmet sich das internationale REANIMA-Projekt, an dem zwölf europäische Forschungszentren beteiligt sind. Das am CNIC (Centro Nacional de Investigaciones Cardiovasculares) in Madrid koordinierte Projekt startet im Januar 2020 und wird von der Europäischen Kommission mit 8 Millionen Euro über fünf Jahre gefördert.

Herz-Kreislauf-Erkrankungen verursachen weltweit die meisten Todesfälle. Herzinsuffizienz ist geradezu eine Epidemie, die neben der persönlichen Belastung mit...

Im Focus: Göttinger Chemiker weisen kleinstmögliche Eiskristalle nach

Temperaturabhängig gefriert Wasser zu Eis und umgekehrt. Dieser Vorgang, in der Wissenschaft als Phasenübergang bezeichnet, ist im Alltag gut bekannt. Um aber ein stabiles Gitter für Eiskristalle zu erreichen, ist eine Mindestanzahl an Molekülen nötig, ansonsten ist das Konstrukt instabil. Bisher konnte dieser Wert nur grob geschätzt werden. Einem deutsch-amerikanischen Forschungsteam unter Leitung des Chemikers Prof. Dr. Thomas Zeuch vom Institut für Physikalische Chemie der Universität Göttingen ist es nun gelungen, die Größe kleinstmöglicher Eiskristalle genau zu bestimmen. Die Forschungsergebnisse sind in der Fachzeitschrift Proceedings of the National Academy of Science erschienen.

Knapp 100 Wassermoleküle sind nötig, um einen Eiskristall in seiner kleinstmöglichen Ausprägung zu formen. Nachweisen konnten die Wissenschaftler zudem, dass...

Im Focus: Verzerrte Atome

Mit zwei Experimenten am Freie-Elektronen-Laser FLASH in Hamburg gelang es einer Forschergruppe unter Führung von Physikern des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg, starke nichtlineare Wechselwirkungen ultrakurzer extrem-ultravioletter (XUV) Laserpulse mit Atomen und Ionen hervorzurufen. Die heftige Anregung des Elektronenpaars in einem Heliumatom konkurriert so stark mit dem ultraschnellen Zerfall des angeregten Zustands, dass vorübergehend sogar Besetzungsinversion auftreten kann. Verschiebungen der Energie elektronischer Übergänge in zweifach geladenen Neonionen beobachteten die Wissenschaftler mittels transienter Absorptionsspektroskopie (XUV-XUV Pump-Probe).

Ein internationales Team unter Leitung von Physikern des MPIK veröffentlicht seine Ergebnisse zur stark getriebenen Zwei-Elektronen-Anregung in Helium durch...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

Automatisiertes Fahren und Recht

06.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Effizienz-Weltrekord für organische Solarmodule aufgestellt

11.11.2019 | Energie und Elektrotechnik

Antibiotika: Neuer Wirkstoff wirkt auch bei resistenten Bakterien

11.11.2019 | Biowissenschaften Chemie

Forschungsprojekt kombiniert Digitalisierung und Verfahrenstechnik

11.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics