Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroskopie mit einer Quantenspitze

30.05.2011
Eine Wolke aus ultrakalten Rubidiumatomen benutzen Tübinger Physiker als Sonde, um nanostrukturierte Oberflächen abzubilden.

Mikroskope machen Kleines sichtbar – das sagt ihr Name. Doch moderne Mikroskope tun das oft über den Umweg, dass sie Oberflächen nicht mit optischen Methoden darstellen, sondern mit einer feinen Spitze abtasten.


Eine ultrakalte Atomwolke (gelb) wird in einer Magnetfalle festgehalten und über eine dreidimensional strukturierte Oberfläche geführt. Im Kontaktmodus lässt sich ein Verlust von Atomen aus der Wolke messen, der abhängig von der Topographie der Oberfläche ist. Im dynamischen Modus verändern sich Frequenz und Amplitude einer Schwingung des Massenzentrums der Wolke abhängig von der Oberflächenstruktur. Auf beiden Wegen lässt sich die Topographie der Oberfläche abbilden. Universität Tübingen, AG Nano-Atomoptik

Dort, wo optische Abbildungsmethoden an ihre Grenzen kommen, zeigen solche Rastersondenmikroskope mit unterschiedlichen Techniken noch Strukturen von Millionstel Millimeter Größe. Mit ihrer Hilfe lassen sich Phänomene der Nanowelt sichtbar machen und sogar gezielt beeinflussen. Das Herzstück eines Rastersondenmikroskops ist eine beweglich aufgehängte Spitze, die, vergleichbar mit der Nadel eines Plattenspielers, auf feine Unebenheiten der Probenoberfläche reagiert und diese in Signale umwandelt, die sich mit Computerhilfe als Bild darstellen lassen.

Forschern der Universität Tübingen ist es nun gelungen, dieses Herzstück eines Rastersondenmikroskops nicht aus einem festen Material wie beim Plattenspieler herzustellen, sondern aus einer ultrakalten verdünnten Gaswolke. Dabei kühlen sie ein besonders reines Gas aus Rubidiumatomen auf Temperaturen unterhalb von einem Millionstel Grad über dem absoluten Nullpunkt ab und speichern die Atome in einer Magnetfalle. Diese „Quantenspitze“ kann präzise positioniert werden und ermöglicht so die Abtastung nanostrukturierter Oberflächen. Mit dieser Methode seien genauere Messungen der Wechselwirkungen zwischen Atomen und Oberflächen möglich, und durch weiteres Abkühlen der ultrakalten Sondenspitze entstehe ein sogenanntes Bose-Einstein-Kondensat, mit dem sich die Auflösung der Messung erheblich steigern lasse, berichten die Wissenschaftler um den Inhaber des Lehrstuhls für Nano-Atomoptik, Prof. Dr. József Fortágh, und seine Mitarbeiter Dr. Andreas Günther und den Doktoranden Michael Gierling. Gierling ist Erstautor der Studie, die am 29. Mai als Online-Vorabveröffentlichung der Fachzeitschrift „Nature Nanotechnology“ erschienen ist.

Die Wissenschaftler haben die Spitze ihres Kaltatom-Rastersondenmikroskops an einer Probe demonstriert, auf welcher sich senkrecht gewachsene Kohlenstoff-Nanoröhren befanden. Von einer Art magnetischem Förderband wurde die Spitze über die Probe geführt. Bei einer ersten Messung im sogenannten Kontaktmodus streiften die Erhebungen auf der Probe einzelne Atome aus der Wolkenspitze, die im Abstand weniger Mikrometer über sie hinweg fuhr. Dieser Verlust diente als Maß für Position und Höhe der Nanoröhrchen und zur Abbildung der Oberflächentopographie.

Wenn die Temperatur eines Atomgases immer näher an den absoluten Nullpunkt herankommt, tritt ein quantenmechanisches Phänomen ein, das aus der Wolke ein sogenanntes Bose-Einstein-Kondensat macht. In diesem Aggregatzustand sind die einzelnen Atome nicht mehr voneinander zu unterscheiden. Sie bilden sozusagen alle gemeinsam ein einziges großes Atom. Mit solchen Bose-Einstein-Kondensaten gelang es den Tübinger Wissenschaftlern, auch einzelne freistehende Nanoröhrchen abzubilden. Durch künftige Weiterentwicklungen des Kaltatom-Rastersondenmikroskops könne, so die Forscher, die Auflösung von bisher etwa acht Mikrometern um theoretisch den Faktor tausend verbessert werden.

Auch im sogenannten dynamischen Messmodus funktionierte das Mikroskop. Die Forscher erzeugten erneut Bose-Einstein-Kondensate dicht über der Probe. Brachten sie diese Kondensate senkrecht zur Oberfläche in Schwingungen, so änderten sich die Frequenz und die Schwingungsweite abhängig von der Topographie der Probenoberfläche. Auch auf diesem Weg erhielten sie ein hoch aufgelöstes Bild der Oberfläche. Der Vorteil dieses Messverfahrens liege darin, dass keine Atome aus der Wolke verloren gehen, schreiben die Forscher. Das könne von Vorteil in Fällen sein, in denen solche von der Probe adsorbierte Atome die Messung beeinflussen könnten.

Als Fazit formulieren die Forscher: „Die extreme Reinheit der Sondenspitze und die Möglichkeit, die atomaren Zustände in einem Bose-Einstein-Kondensat quantenmechanisch zu kontrollieren, eröffnen für die Zukunft neue Möglichkeiten der Rastersondenmikroskopie mit nicht-klassischen Sondenspitzen.“ Darüber hinaus erhoffen sie sich neue Anwendungen von der jetzt erprobten Möglichkeit, ultrakalte Quantengase und Nanostrukturen miteinander in Verbindung zu bringen.

Die Studie entstand im Rahmen des BMBF-Förderprogramms „NanoFutur“ und in Zusammenarbeit mehrerer Arbeitsgruppen des Center for Collective Quantum Phenomena (CQ) Tübingen, an dem verschiedene Arbeitsgruppen des Fachbereichs Physik der Mathematisch-Naturwissenschaftlichen Fakultät beteiligt sind.

M. Gierling, P. Schneeweiß, G. Visanescu, P. Federsel, M. Häffner, D. P. Kern, T. E. Judd, A. Günther und J. Fortágh: Coldatom scanning probe microscopy. Nature Nanotechnology, Online-Vorabveröffentlichung vom 29. Mai 2011, DOI: 10.1038/NNANO.2011.80

Kontakt:
Dr. Andreas Günther & Prof. Dr. József Fortágh
Universität Tübingen,
Mathematisch-Naturwissenschaftliche Fakultät, Physikalisches Institut
Telefon: +49 7071 29-76281 und 29-76270
E-Mail: a.guenther@uni-tuebingen.de, fortagh@uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Wasserelektrolyse hat Potenzial zur Gigawatt-Industrie
18.09.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Was ist Asthma – und wenn ja wie viele?
12.09.2018 | Deutsches Zentrum für Lungenforschung e.V.

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Im Focus: Bio-Kunststoffe nach Maß

Zusammenarbeit zwischen Chemikern aus Konstanz und Pennsylvania (USA) – gefördert im Programm „Internationale Spitzenforschung“ der Baden-Württemberg-Stiftung

Chemie kann manchmal eine Frage der richtigen Größe sein. Ein Beispiel hierfür sind Bio-Kunststoffe und die pflanzlichen Fettsäuren, aus denen sie hergestellt...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: Mit Nano-Lenkraketen Keime töten

Wo Antibiotika versagen, könnten künftig Nano-Lenkraketen helfen, multiresistente Erreger (MRE) zu bekämpfen: Dieser Idee gehen derzeit Wissenschaftler der Universität Duisburg-Essen (UDE) und der Medizinischen Hochschule Hannover nach. Zusammen mit einem führenden US-Experten tüfteln sie an millionstel Millimeter kleinen Lenkraketen, die antimikrobielles Silber zielsicher transportieren, um MRE vor Ort zur Strecke zu bringen.

In deutschen Krankenhäusern führen die MRE jährlich zu tausenden, teils lebensgefährlichen Komplikationen. Denn wer sich zum Beispiel nach einer Implantation...

Im Focus: Schaltung des Stromflusses auf atomarer Skala

Forscher aus Augsburg, Trondheim und Zürich weisen gleichrichtende Eigenschaften von Grenzflächenkontakten im ferroelektrischen Halbleiter nach.

Die Grenzflächen zwischen zwei elektrisch unterschiedlich polarisierten Bereichen im Festkörper werden als ferroelektrische Domänenwände bezeichnet. In der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungen

Unbemannte Flugsysteme für die Klimaforschung

18.09.2018 | Veranstaltungen

Studierende organisieren internationalen Wettbewerb für zukünftige Flugzeuge

17.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Auf der InnoTrans 2018 mit innovativen Lösungen für den Güter- und Personenverkehr

18.09.2018 | Messenachrichten

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungsnachrichten

Extrem klein und schnell: Laser zündet heißes Plasma

18.09.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics