Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Immunzellen und HIV - Neue Studie zu HIV-Zelltropismus

04.02.2010
Warum vermehrt oder versteckt sich HIV-1 in bestimmten Immunzellen besser als in anderen? Gibt es nätürliche Schutzmechanismen auf Immunzellen, die beeinflussen, wie sich HIV in den Zellen vermehrt?

In ihrer aktuellen Studie konnten Wissenschaftler des Heinrich-Pette-Instituts in Hamburg und der Universität Ulm eine wichtige Antwort auf diese Fragen finden. Das zelluläre Eiweiß Tetherin ist eine zentrale Barriere, die beeinflusst in welchen Immunzellen sich HIV-1 vermehren kann und somit den HIV-Zelltropismus lenkt. Das berichten die Forscher jetzt in ihrer Publikation im online-Fachjournal Retrovirology (M. Schindler et al; Retrovirology 2110, 7:1, doi:10.1186/1742-4690-7-1).

"Im letzten Jahr konnten wir bereits einen Faktor identifizieren, der für die optimale Anpassung von HIV-1 an den Menschen wichtig ist und so zur AIDS-Pandemie beitragen konnte. Es ist das virale Eiweiß Vpu, das verschiedene Schutzmechanismen des menschlichen Immunsystems überwinden kann", erklärt Michael Schindler vom Heinrich-Pette-Institut. Seit langem wird jedoch kontrovers diskutiert, in welche Immunzellen sich HIV-Erreger im Krankheitsverlauf zurückziehen können und wie sie z.B. im Körper die Blut-Hirn-Schranke überwinden können. Die Wissenschaftler interessiert vor allem, welche zellulären und viralen Faktoren für diesen HIV-Zelltropismus verantwortlich sind.

Für die aktuelle Studie untersuchten Schindler und seine Kollegen primäre Immunzellen - also Zellen, die direkt aus menschlichen Blut- und Gewebeproben gewonnen wurden. Neben voll funktionsfähigem HIV-1 wurde außerdem eine Virusmutante verwendet, die einen Defekt im Vpu-Gen hat. Dieser Defekt hat zur Folge, dass die Virusmutante einen wichtigen Schutzmechanismus auf Immunzellen gegen HIV-1, die so genannte Tetherin-Barriere, nicht optimal überwinden kann. Dieses Tetherin-Eiweiß wirkt auf den Immunzellen wie ein Klebstoff, der Virusnachkommen zurückhält, so dass sie nicht freigesetzt werden können.

"Jetzt zeigen wir zum ersten Mal, dass die Unterdrückung der Tetherin-Barriere durch Vpu in primären Immunzellen tatsächlich eine zentrale Rolle spielt", fasst Michael Schindler zusammen. Die Virus-Mutante konnte diese Barriere auf Makrophagen, den "Fresszellen" des Immunsystems, nicht überwinden. Der Grund: Makrophagen erzeugen hohe Mengen Tetherin und können deswegen nur durch HIV-1 Stämme mit voll funktionsfähigem Vpu infiziert werden. Im Gegensatz dazu ließen sich primäre T-Zellen jedoch auch durch den HIV-1 Stamm mit einem Defekt in Vpu infizieren und setzten große Mengen neuer Virusnachkommen frei. "Das liegt daran, dass T-Zellen nur wenig Tetherin auf ihrer Zellmembran tragen und diese Barriere somit auch durch die Vpu-Mutanten überwunden werden kann", erklärt Schindler. Die Fähigkeit von Vpu, die Tetherin-Barriere auf verschiedenen Zelltypen zu überwinden, ist somit eine wichtige Determinante für den HIV-1 Zelltropismus.

Aktuelle Publikation:
Vpu serine 52 dependent counteraction of tetherin is required for HIV-1 replication in macrophages, but not in ex vivo human lymphoid tissue
Michael Schindler , Devi Rajan , Carina Banning , Peter Wimmer , Herwig Koppensteiner , Alicja Iwanski , Anke Specht , Daniel Sauter , Thomas Dobner and Frank Kirchhoff

Retrovirology 2010, 7:1doi:10.1186/1742-4690-7-1

Dr. Angela Homfeld | idw
Weitere Informationen:
http://www.hpi-hamburg.de

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Internationale Studie: Wie lässt sich Gletscherschmelze genauer vorhersagen?
09.07.2020 | Universität Bremen

nachricht Erste Ergebnisse der Aerosol-Studie mit dem Chor des BR zu Corona-Ansteckungsrisiken beim Singen liegen vor
03.07.2020 | Klinikum der Universität München

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics