Den Grundlagen des Lernens und Gedächtnisses auf der Spur

Professor Peter Sonderegger vom Biochemischen Institut der Universität Zürich beschäftigt sich mit der Frage, wie wir lernen und das Gelernte speichern können. Die Antwort liegt im Verständnis des Phänomens der synaptischen Plastizität.

Nervenzellen tauschen ihre elektrischen Signale an Kontaktstellen, den so genannten Synapsen, aus. Durch die synaptische Signalübertragung zwischen den Nervenzellen entstehen elektrische Schaltkreise, welche die Grundlage liefern für die informationsverarbeitenden Funktionen des Gehirns. Beim Lernen und für die Speicherung des Gelernten werden elektrische Schaltkreise des Gehirns durch verschiedene Prozesse verändert.

Neue Synapsen entstehen

Der Forschungsgruppe um Peter Sonderegger ist es nach 15 Jahren intensiver Forschung gelungen, einen Regulationsmechanismus der synaptischen Plastizität auf biochemischer und struktureller Ebene aufzuklären. So konnten er und seine Mitarbeitenden zeigen, wie das Eiweiss Neurotrypsin dazu beiträgt, dass nach intensiver Aktivierung bestehender Synapsen die Bildung neuer Synapsen eingeleitet wird.

Menschen, denen das Eiweiss Neurotrypsin aufgrund eines genetischen Defekts fehlt, haben zwar normale Organ- und Muskelfunktionen, sind aber geistig schwer behindert. Obwohl ihr Gehirn anatomisch normal aussieht, können diese Menschen weder sprechen noch lesen lernen oder einfache praktische Tätigkeiten ausüben. Diese schwerwiegenden Ausfallerscheinungen zeigen die essentielle Rolle von Neurotrypsin für Lernen und Gedächtnis.

Mechanismus für Langzeitgedächtnis

Die Untersuchungen im Sonderegger-Labor zeigen nun, wie Neurotrypsin seine unentbehrlichen Funktionen entfaltet. Im gesunden Gehirn führt der Impuls einer aktiven Nervenzelle zur Ausschüttung von Neurotrypsin an den Synapsen. Nur wenn auch die nachfolgende Nervenzelle aktiv ist, kann Neurotrypsin mit einem weiteren Eiweiss, dem Agrin, interagieren und es spalten.

Das unter anderem entstehende kurze Agrin-Fragment bewirkt seinerseits die Bildung von so genannten Filopodien. Diese fingerartigen Ausstülpungen der Zelle gelten als Vorläufer von Synapsen. Durch die spezifische Kommunikation zweier aktiver Nachbarzellen werden also an der Synapse biochemische und zelluläre Prozesse in Gang gesetzt, die letztendlich zu neuen Synapsen und damit zu einer strukturellen Veränderung der neuronalen Schaltkreise führen können. Das Neurotrypsin-Agrin-System fungiert dabei quasi als „Koinzidenzdetektor“, d.h. es wirkt wie ein Sensor, der die zeitgleiche Aktivität zweier verknüpfter Nervenzellen signalisiert. Vermutlich ist dieser Mechanismus besonders wichtig für die Ausbildung und den Unterhalt von Langzeitgedächtnisleistungen.

Auch in Zukunft wird sich die Gruppe Sonderegger mit dem Phänomen des Lernens und der langzeitigen Speicherung der Gedächtnisinhalte beschäftigen. Sie wird versuchen, den Mechanismus noch detaillierter zu verstehen und weitere Interaktionspartner des Neurotrypsin-Agrin-Systems zu identifizieren. Zudem soll die spezifische Rolle des Neurotrypsin-Agrin-Koinzidenzdetektors für die Stabilisierung von Lerninhalten in verschiedenen Gedächtnissystemen ergründet werden.

Originalbeitrag:
Matsumoto-Miyai, K., Sokolowska, E., Zurlinden, A., Gee, C.E., Lüscher, D., Hettwer, S., Wölfel, J., Ladner, AP., Ster, J., Gerber, U., Rülicke, T., Kunz, B. & Sonderegger, P.: Coincident pre- and postsynaptic activation induces dendritic filopodia via neurotrypsin-dependent agrin cleavage. Cell, März 2009
Kontakt:
Prof. Peter Sonderegger, Biochemisches Institut der Universität Zürich
Tel. 0041 44 63 55541
E-Mail: peter.sonderegger@bioc.uzh.ch

Media Contact

Beat Müller idw

Weitere Informationen:

http://www.bioc.uzh.ch

Alle Nachrichten aus der Kategorie: Studien Analysen

Hier bietet Ihnen der innovations report interessante Studien und Analysen u. a. aus den Bereichen Wirtschaft und Finanzen, Medizin und Pharma, Ökologie und Umwelt, Energie, Kommunikation und Medien, Verkehr, Arbeit, Familie und Freizeit.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Der Klang der idealen Beschichtung

Fraunhofer IWS transferiert mit »LAwave« lasergestützte Schallanalyse von Oberflächen in industrielle Praxis. Schallwellen können auf Oberflächen Eigenschaften verraten. Parameter wie Beschichtungsqualität oder Oberflächengüte von Bauteilen lassen sich mit Laser und…

Individuelle Silizium-Chips

… aus Sachsen zur Materialcharakterisierung für gedruckte Elektronik. Substrate für organische Feldeffekttransistoren (OFET) zur Entwicklung von High-Tech-Materialien. Wie leistungsfähig sind neue Materialien? Führt eine Änderung der Eigenschaften zu einer besseren…

Zusätzliche Belastung bei Knochenmarkkrebs

Wie sich Übergewicht und Bewegung auf die Knochengesundheit beim Multiplen Myelom auswirken. Die Deutsche Forschungsgemeinschaft (DFG) fördert ein Forschungsprojekt der Universitätsmedizin Würzburg zur Auswirkung von Fettleibigkeit und mechanischer Belastung auf…

Partner & Förderer