Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ernährung kann innere Uhr und hormonelle Reaktionen beeinflussen

07.11.2019

Erstmals zeigt eine Studie unter der Leitung des Helmholtz Zentrums München und des Deutschen Zentrums für Diabetesforschung (DZD), auf welche Art und Weise Glukokortikoidhormone wie Cortisol, den Zucker- und Fettspiegel steuern. Dabei wurde insbesondere der Unterschied zwischen Tag und Nacht, Nahrungsaufnahme und Fasten sowie Ruhe und Aktivität über einen Zeitraum von 24 Stunden beobachtet.

Die Forschungsarbeiten an Mäusen machen deutlich, dass sich der tageszeitabhängige Stoffwechselzyklus durch eine kalorienreiche Ernährung verändert. Da Glukokortikoide häufig zur Behandlung von Entzündungskrankheiten eingesetzt werden, deuten die veröffentlichten Ergebnisse im Journal ‚Molecular Cell‘ darauf hin, dass schlanke und adipöse Patienten unterschiedlich auf die Therapie mit Steroiden reagieren könnten.


Beispiel einer Fettleber.

@Helmholtz Zentrum München / Uhlenhaut.

Des Weiteren verdeutlicht die Studie die biologische Funktion des täglichen Rhythmus der Hormonausschüttung – hoch vor dem Aufwachen und der Nahrungsaufnahme, niedrig beim Schlafen und Fasten – sowie die täglichen Zyklen der Zucker- und Fettspeicherung bzw. -freisetzung durch die Leber.

Jede Zelle im menschlichen Körper wird von einer inneren Uhr angetrieben, die dem zirkadianen Rhythmus von 24 Stunden folgt. Sie verläuft synchron zum natürlichen Zyklus von Tag und Nacht, hauptsächlich gesteuert durch Sonnenlicht, aber auch durch soziale Gewohnheiten.

In einem gesunden System produziert die Nebenniere jeden Morgen Glukokortikoidstresshormone. Die Freisetzung von hohen Mengen an Glukokortikoid vor dem Aufwachen veranlasst den Körper, Fettsäuren und Zucker als Energiequellen zu nutzen. Dies ermöglicht es uns, in den Tag zu starten.

Bei Störungen des zirkadianen Rhythmus (z.B. durch Schichtarbeit oder Jetlag) und/oder bei Veränderungen des Glukokortikoidspiegels (z.B. durch das Cushing-Syndrom oder langfristige klinische Behandlung) können schwerwiegende metabolische Dysregulationen wie Fettleibigkeit, Typ-2-Diabetes oder Fettlebererkrankungen auftreten.

Ziel des Forschungsteams war es daher, die Bedeutung der täglichen Ausschüttung großer Mengen an Stresshormonen, den Einfluss dieser Hormone auf unsere innere Uhr und ihre Rolle für die täglichen Stoffwechselzyklen zu verstehen.

Stoffwechselvorgänge von Glukokortikoiden in der Leber

Um die metabolischen Funktionen der Glukokortikoide in der Leber zu untersuchen, charakterisierten die Forschenden die Aktivität ihres Rezeptors, des so genannten Glukokortikoidrezeptors, mit neuen Hochdurchsatz-Technologien. Alle vier Stunden, Tag und Nacht, analysierten sie die Leber von Mäusen. Die Mäuse wurden entweder mit normaler oder fettreicher Nahrung gefüttert.

Mit Hilfe modernster Verfahren aus der Genomik, Proteomik und Bioinformatik konnte das Team sich dann ein Bild davon machen, wann und wo der Glukokortikoidrezeptor seine metabolische Wirkung entfaltet. Die Forschenden analysierten die Auswirkungen der täglichen Schwankungen der Glukokortikoidfreisetzung im 24-Stunden-Zyklus des Leberstoffwechsels.

Sie konnten veranschaulichen, wie Glukokortikoide den Stoffwechsel beim Fasten (wenn die Mäuse schlafen) und bei der Nahrungsaufnahme (wenn sie aktiv sind) durch zeitabhängige Bindung an das Genom unterschiedlich regeln. Die Studie zeigt außerdem, wie die Mehrheit der rhythmischen Genaktivität durch diese Hormone gesteuert wird.

Bei Verlust dieser Kontrolle (bei sogenannten Knockout-Mäusen) wirkt sich dies auf die Zucker- und Fettwerte im Blut aus. Dies erklärt, wie die Leber den Zucker- und Fettgehalt im Blut bei Tag und Nacht unterschiedlich steuert.

Da der Glukokortikoidrezeptor in der Immuntherapie häufig zum Einsatz kommt, untersuchte das Team in einem nächsten Schritt seine genomischen Auswirkungen nach der Injektion des Wirkstoffs Dexamethason, einem synthetischen Glukokortikoid, das auch diesen Rezeptor aktiviert.

„Mit diesem Experiment“, erklärt Dr. Fabiana Quagliarini, „fanden wir heraus, dass sich die Wirkstoffreaktion bei fettleibigen Mäusen von der bei schlanken Mäusen unterscheidet. Damit konnten wir zum ersten Mal zeigen, dass die Ernährung die hormonellen und medikamentösen Reaktionen des Stoffwechsels verändern kann.“

Neue Erkenntnisse für die Chronomedizin und die Therapie von Stoffwechselerkrankungen

Glukokortikoide sind eine Gruppe von natürlichen und synthetischen Steroidhormonen wie Cortisol. Sie besitzen hochwirksame entzündungshemmende und immunsuppressive Eigenschaften, die die Aktivität des Immunsystems kontrollieren können. Daher werden sie in der Medizin weithin genutzt. Der größte Nachteil dabei ist, dass Glukokortikoide aufgrund ihrer Fähigkeit, den Zucker- und Fettstoffwechsel zu regulieren, auch schwere Nebenwirkungen verursachen können: Die Patienten können Fettleibigkeit, Hypertriglyceridämie, Fettleber, Bluthochdruck oder Typ-2-Diabetes entwickeln.

„Wenn wir verstehen, wie Glukokortikoide die 24-Stunden-Zyklen der Genaktivität in der Leber und damit den Zucker- und Fettspiegel im Blut kontrollieren, gewinnen wir neue Erkenntnisse für die ‚Chronomedizin‘ und die Entwicklung von Stoffwechselerkrankungen. Wir konnten einen neuen Zusammenhang zwischen Lebensstil, Hormonen und Physiologie auf molekularer Ebene beschreiben. Dieser deutet darauf hin, dass adipöse Menschen unterschiedlich auf die tägliche Hormonausschüttung oder auf Glukokortikoidpräparate reagieren könnten. Diese Mechanismen sind die Grundlage für die Entwicklung künftiger Therapien“, verdeutlicht Prof. Henriette Uhlenhaut.

Uhlenhaut leitete das Forschungsteam der Institute für Diabetes und Adipositas sowie Diabetes und Krebs am Helmholtz Zentrum München, dem Deutschen Zentrum für Diabetesforschung (DZD), dem Max-Planck-Institut für Biochemie, der Northwestern University Feinberg School of Medicine in Chicago und der School of Life Sciences Weihenstephan an der Technischen Universität München (TUM).

Originalpublikation
Quagliarini et al., 2019: Cistromic reprogramming of the diurnal glucocorticoid hormone response by high-fat diet (https://www.cell.com/molecular-cell/fulltext/S1097-2765(19)30767-1). Molecuar Cell, DOI: 10.1016/j.molcel.2019.10.007

Wissenschaftliche Ansprechpartner:

Prof. Dr. Nina Henriette Uhlenhaut

Helmholtz Zentrum München
Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)
Institut für Diabetes und Krebs
Ingolstädter Landstraße 1
D-85764 Neuherberg
Tel. +49 89 3187-2052
Email: henriette.uhlenhaut@helmholtz-muenchen.de

Originalpublikation:

https://doi.org/10.1016/j.molcel.2019.10.007

Verena Schulz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt
Weitere Informationen:
http://www.helmholtz-muenchen.de

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Lucy hatte ein affenähnliches Gehirn
02.04.2020 | Max-Planck-Institut für evolutionäre Anthropologie

nachricht Neue ESO-Studie bewertet den Einfluss von Satellitenkonstellationen auf astronomische Beobachtungen
05.03.2020 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

07.04.2020 | Physik Astronomie

Festkörperphysik: Vorhersage der Quantenphysik experimentell nachgewiesen

07.04.2020 | Physik Astronomie

Wie Serotonin die Kommunikation im Gehirn ausbalanciert

07.04.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics