Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TGN1412 - Neue Erkenntnisse helfen, das Scheitern der klinischen Studie im März 2006 in London besser zu verstehen

25.03.2008
Forscher der Universitätsmedizin Göttingen haben Details zur Wirkweise einer neuen Substanzklasse aufgeklärt, zu der auch TGN1412 gehört. Die Ergebnisse erscheinen im April in der renommierten Zeitschrift „The Journal of Clinical Investigation“.

TGN1412 - auf diesem Wirkstoff ruhten große Hoffnungen. Ein erster Test an Menschen im März 2006 hatte jedoch schwere Folgen: Sechs gesunde Probanden waren innerhalb von wenigen Stunden erkrankt. Jetzt beschäftigt sich wieder die Grundlagenforschung mit so genannten CD28 superagonistischen Antikörpern, einer Substanzklasse, zu der auch TGN1412 zählt.

Bisher noch unverstanden ist dieses Phänomen: Warum war unter anderem ein Teil der Immunzellen im Blut der Probanden kaum noch nachweisbar? Eine Erklärung liefern dafür jetzt erstmals aktuelle Forschungsergebnisse des Immunologen Prof. Dr. Holger Reichardt und seiner Mitarbeiter aus der Abteilung Zelluläre und Molekulare Immunologie der Universitätsmedizin Göttingen und dem Institut für Virologie und Immunbiologie der Universität Würzburg sowie Kollegen aus München.

In Versuchen mit dem Antikörper JJ316, dem rattenspezifischen Pendant für TGN1412, konnte das Göttinger Forscherteam zeigen: Der Antikörper löst sehr schnelle Effekte aus. Sie führen zu einer rasanten Umverteilung von Immunzellen. Diese verschwinden aus dem Blut und aus Organen wie der Leber und der Lunge. Dagegen sammeln sie sich in der Milz und den Lymphknoten an. Innerhalb von wenigen Minuten nach Gabe des Antikörpers können sich die Immunzellen kaum noch bewegen und auch die Milz und die Lymphknoten nicht mehr verlassen. "Unsere Studien belegen, dass Substanzen wie JJ316 in der Ratte und vermutlich TGN1412 im Menschen die Beweglichkeit von Immunzellen beeinträchtigen und die Wanderung im Körper behindern", sagt Prof. Reichardt, Leiter des Göttinger Forscherteams.

Die Ergebnisse veröffentlicht die renommierte amerikanische Zeitschrift für klinische Forschung, "The Journal of Clinical Investigation" in ihrer April-Ausgabe 2008. Sie sind vorab in der Online-Ausgabe unter www.jci.org zu lesen.

Ziel der Arbeiten war es zu überprüfen, ob die in der klinischen Studie beobachteten Auswirkungen von TGN1412 auch in den zuvor untersuchten Tiermodellen aufgetreten sein könnten. Dabei waren die Wirkungen des Antikörpers bei Menschen vor allem eines: Sehr schnell. Deshalb forschten Prof. Reichardt und sein Team gezielt danach, welche Prozesse der Antikörper in dem kurzfristigen Zeit¬fenster bis 24 Stunden auslöst.

"In unseren Arbeiten konnten wir zeigen, dass T-Zellen, eine spezifische Klasse von Immunzellen, innerhalb von nur vier Stunden nach Gabe des Rattenantikörpers kaum mehr im Blut nachzuweisen sind", sagt Prof. Reichardt. "Diese werden offensichtlich in ihrer Wanderung im Körper beeinflusst. Denn innerhalb kürzester Zeit findet man sie im Blut und in Organen wie der Leber und der Lunge fast nicht mehr. Hingegen sammeln sie sich in den Lymphknoten und der Milz an."

Dem erstaunlichen Ansammeln von Immunzellen in der Milz und in den Lymphknoten ist das Forscherteam mit Hilfe von Videomikroskopie in Zusammenarbeit mit Dr. Alexander Flügel am Max-Planck-Institut für Neurobiologie in Martinsried auf die Spur gekommen. Die Videomikroskopie macht es sichtbar: Innerhalb von zwei Minuten nach Infusion des Antikörpers kommt die Bewegung von T-Zellen quasi zum Stillstand. In der Folge bewegen sie sich für mehrere Stunden fast gar nicht mehr.

Warum sammeln sich Immunzellen in Milz und Lymphknoten an? Dies erklärt eine weitere Beobachtung der Göttinger Grundlagenforscher: Die Klebrigkeit (Adhäsion) der T-Zellen war im Tiermodell erhöht. So blieben die Zellen in den Organen quasi hängen. Darüber hinaus hindert die Behandlung mit JJ316 die T-Zellen daran, auf Signale zu reagieren, die ihre Wanderung im Körper steuern. Normalerweise wandern Immunzellen nach einer bestimmten Zeit des Aufenthaltes wieder aus den Lymphknoten aus und folgen dabei dem Signal einer Substanz aus dem Blut. Die T-Zellen im Tiermodell sind dazu nicht mehr in der Lage. Deshalb können sie die Lymphknoten nicht verlassen.

Für die schweren Nebenwirkungen, welche die sechs Menschen erlitten, die an der klinischen Studie in London teilgenommen haben, ist jedoch vor allem ein anderes Phänomen verantwortlich. In deren Blut fanden sich große Mengen an Mediatoren, so genannte "Zytokine". Die Göttinger Forscher konnten zeigen, dass Immunzellen auch im Tiermodell dazu angeregt werden, solche Mediatoren zu produzieren. Sie werden aber nicht ins Blut freigesetzt. "Ganz offenbar gibt es im Hinblick auf den Regulationsmechanismus einen Unterschied zwischen Ratte und Mensch", sagt Prof. Reichardt.

Das abschließende Ergebnis der Göttinger Forscher: Die beschriebenen Effekte auf die Immunzellen treten sehr rasch nach Infusion des Antikörpers auf. Sie sind zeitlich begrenzt und verschwinden innerhalb von 24 bis 48 Stunden wieder. Erst danach kommt es zu der eigentlich gewünschten positiven Wirkung des Antikörpers: der Vermehrung von "regulatorischen T-Zellen". Sie sollten helfen, Krankheiten wie die Multiple Sklerose, Rheuma und Blutkrebs zu behandeln.

Der Wirkstoff TGN1412 war mit dem Ziel entwickelt worden, schwere chronische Erkrankungen wie Multiple Sklerose, Rheuma oder Blutkrebs zu behandeln. Grundlage ist die Vermehrung sogenannter "regulatorischer T-Zellen". Ihre Hauptaufgabe besteht darin, entgleiste Immunzellen, wie sie bei den genannten Erkrankungen auftreten, in Schach zu halten. In Tiermodellen war zuvor gezeigt worden, dass Antikörper wie TGN1412, in der Lage sind, diese "regulatorischen T-Zellen" innerhalb von zwei bis drei Tagen gezielt zu vermehren und so eine signifikante Linderung der genannten Krankheiten zu erreichen.

Die klinische Phase I-Studie ist der erste Schritt von drei weiteren Prüf-Schritten, die ein Wirkstoff bestehen muss, bevor er als Medikament für Menschen zugelassen wird. Nach vorhergehenden intensiven Untersuchungen im Tiermodell wird dabei erstmals an Menschen geprüft, ob ein Wirkstoff sicher und ohne Nebenwirkungen verabreicht werden kann.

Originalveröffentlichung: "A CD28 superagonistic antibody elicits 2 functionally distinct waves of T cell activation in rats" by Nora Müller, Jens van den Brandt, Francesca Odoardi, Denise Tischner, Judith Herath, Alexander Flügel und Holger M. Reichardt, The Journal of Clinical Investigation, April 2008

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität
Abt. Zelluläre und Molekulare Immunologie
Prof. Dr. Holger Reichardt
Telefon 0551/39-3365, Mail: hreichardt@med.uni-goettingen.de
Humboldtallee 34, 37073 Göttingen

Stefan Weller | Uni Göttingen
Weitere Informationen:
http://www.universitaetsmedizin-goettingen.de

Weitere Berichte zu: Antikörper Immunzelle Lymphknoten T-Zelle

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Wenn das Smartphone zur Schuldenfalle wird
15.10.2018 | Justus-Liebig-Universität Gießen

nachricht Atomare Verunreinigung ähnlich wie bei Edelsteinen dient als Quanten-Informationsspeicher
01.10.2018 | Technische Universität Kaiserslautern

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

Künstliche Intelligenz in der Medizin

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Sinneswahrnehmung ist keine Einbahnstraße

17.10.2018 | Biowissenschaften Chemie

Space Farming dank Pflanzenhormon Strigolacton

17.10.2018 | Agrar- Forstwissenschaften

Oberflächen mit flexiblen und handlichen Plasmaquellen aktivieren

17.10.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics