Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zusammenstoß einzelner Atome führt zu zweifacher Änderung des Drehimpulses

23.01.2019

Dank neuer Technik ist es möglich, einzelne Atome festzuhalten, gezielt zu bewegen oder ihren Zustand zu verändern. Auch Kaiserslauterer Physiker arbeiten damit. In einer aktuellen Studie haben sie die Folgen des Zusammenstoßes zweier Atome in einem schwachen Magnetfeld bei geringer Temperatur untersucht. Erstmals haben sie beobachtet, dass die Atome, die ihren Drehimpuls gewissermaßen in einzelnen Paketen (Quanten) tragen, hierbei zwei Pakete austauschen. Auch zeigte sich, dass sich die Wechselwirkungsstärke zwischen den Atomen dabei steuern lässt. Interessant ist das, um etwa chemische Reaktionen zu untersuchen. Die Arbeit ist in der Fachzeitschrift Physical Review Letters erschienen.

Noch bis vor wenigen Jahrzehnten war es für die Physikwelt undenkbar, Experimente mit einzelnen atomaren Teilchen durchzuführen. Erwin Schrödinger, einer der Väter der modernen Quantentheorie, erwartete von dieser Idee „lächerliche Konsequenzen“ und bezeichnete sie als ähnlich wahrscheinlich wie das Großziehen eines Ichtyosaurus-Dinosauriers im Zoo.


Professor Widera (rechts) und Felix Schmidt erforschen Quantensysteme.

Foto: Koziel/TUK

Allerdings machen die Fortschritte in der Lasertechnik und der Atomphysik heutzutage Experimente mit einzelnen Atomen möglich.

Auch an der Technischen Universität Kaiserslautern (TUK) beschäftigen sich Physiker um Professor Artur Widera und seinem Doktoranden Felix Schmidt im Lehrgebiet Individual Quantum Systems damit. Sie setzen dabei auf ein sogenanntes Bose-Einstein-Kondensat, das aus Rubidium-Atomen besteht.

„Damit bezeichnet man in der Physik einen Zustand von Materie, der vergleichbar mit flüssigen und gasförmigen Zuständen ist. Allerdings ist ein solches Kondensat ein perfekter quantenmechanischer Zustand, der sich wie eine Welle verhält“, sagt Professor Widera. Das Kondensat ist vergleichbar mit einem Gas, das aus sehr wenigen Atomen besteht.

In einer aktuellen Studie haben sie gemeinsam mit Professor Eberhard Tiemann von der Gottfried Wilhelm Leibniz Universität Hannover untersucht, welche Effekte es gibt, wenn ein einzelnes Cäsium-Atom auf ein Rubidium-Atom trifft. Um die Teilchen zu beobachten, müssen die Forscher sie zunächst auf Temperaturen dicht über dem absoluten Temperaturnullpunkt abkühlen.

„Im Anschluss haben wir die Atome mit einer optischen Pinzette miteinander in Kontakte gebracht“, sagt Felix Schmidt. Hierbei werden Atome mithilfe von Laserstrahlen festgehalten. Die Forscher haben nun ein einzelnes Cäsium-Atom in das Rubidium-Gas gegeben, um zu messen, was vor und nach dem Zusammenstoß der Atome passiert.

Die Physiker haben beobachtet, wie die Teilchen beim Stoß ihren Drehimpuls ändern, indem sie den Zustand des einzelnen Cäsium-Atoms vor und nach dem Zusammenstoß vermessen haben. Der Drehimpuls der Teilchen liegt bei Atomen gewissermaßen in einzelnen Paketen vor – sogenannten Elementar-Quanten.

Die Forscher haben nun beobachtet, dass die Atome bei einem einzelnen Stoß gleich zwei solcher Drehimpuls-Quanten auf einmal austauschen können. Beobachtet wurde bisher lediglich der Austausch eines einzelnen Pakets (Quants). „Dies ist nur möglich, weil wir das Experiment in einem niedrigen Magnetfeld durchgeführt haben“, sagt Schmidt.

Auf diese Weise ist die Energie der Atome so niedrig, dass vor allem die Wechselwirkung zwischen den einzelnen Bausteinen der beiden das Ergebnis des Stoßes bestimmt. „Dadurch ist es möglich, dass es gleichzeitig zum Übertrag von zwei sogenannten Elementar-Quanten kommt, also zur zweifachen Änderung des Drehimpulses“, fährt der Physiker fort.

Darüber hinaus haben die Wissenschaftler einen weiteren Effekt beobachtet. „Das schwache Magnetfeld und die geringe Bewegungsenergie führen dazu, dass die Atome auch bei einem Abstand tausendmal größer als die Atome selbst zueinander in Wechselwirkung stehen“, fährt Schmidt fort.

Ändert man gezielt die Stärke des Magnetfelds, ließe sich auch diese Wirkung steuern. Der Effekt steht im direkten Zusammenhang mit einem sehr großen und sehr schwach gebundenen Molekülzustand zwischen beiden Teilchen. „Indirekt konnten wir so ein riesiges Molekül von circa zwei Mikrometern Größe beobachten“, sagt Schmidt.

Diese Kenntnisse über die Wechselwirkung zwischen Teilchen bei sehr niedrigen Energien können zum Beispiel helfen, um Bindungen bei Molekülen zu untersuchen. Sie bestehen wenigstens aus zwei Atomen, die über Wechselwirkungen miteinander verbunden sind. Damit wäre es unter anderem möglich, sehr große Moleküle zu präparieren und zu erforschen.

Die Studie wurde in der renommierten Fachzeitschrift Physical Review Letters veröffentlicht: „Tailored single-atom collisions at ultra-low energies.“
DOI: 10.1103/PhysRevLett.122.013401
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.013401

Wissenschaftliche Ansprechpartner:

Prof. Dr. Artur Widera
Lehrgebiet Individual Quantum Systems
E-Mail: widera(at)physik.uni-kl.de
Tel.: 0631 205-4130

Felix Schmidt
E-Mail: schmidtf(at)physik.uni-kl.de
Tel.: 0631 205-5272

Originalpublikation:

Die Studie wurde in der renommierten Fachzeitschrift Physical Review Letters veröffentlicht: „Tailored single-atom collisions at ultra-low energies.“
DOI: 10.1103/PhysRevLett.122.013401
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.013401

Melanie Löw | Technische Universität Kaiserslautern
Weitere Informationen:
http://www.uni-kl.de

Weitere Berichte zu: Atome Drehimpuls Drehimpulses Kondensat Magnetfeld Quantum Wechselwirkung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kosmische Katastrophe bestätigt Einsteins Relativitätstheorie
10.07.2020 | Max-Planck-Institut für Physik

nachricht Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen
09.07.2020 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics