Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zinn-100, ein doppelt magischer Kern - Schlüsselexperiment der Kernphysik

21.06.2012
Wenige Minuten nach dem Urknall gab es im Universum nur die Elemente Wasserstoff und Helium.
Alle anderen chemischen Elemente entstanden erst sehr viel später. Physikern der Technischen Universität München (TUM), des Exzellenzclusters Universe und des Helmholtz-Instituts für Schwerionenforschung (GSI) ist es nun gelungen, Zinn-100 herzustellen, ein zwar sehr instabiles, aber für das Verständnis der Bildung schwererer Elemente sehr wichtiges Element. Über ihre Ergebnisse berichten sie in der aktuellen Ausgabe des Wissenschaftsjournals Nature.

Stabiles Zinn, so wie wir es kennen, besitzt 112 Kernteilchen, 50 Protonen und 62 Neutronen. Die Neutronen wirken dabei gewissermaßen wie ein Puffer zwischen den sich elektrisch abstoßenden Protonen und verhindern, dass normales Zinn zerfällt. Nach dem Schalenmodell der Kernphysik ist die 50 eine „magische Zahl“, bei der besondere Eigenschaften auftreten. Zinn-100 ist mit 50 Protonen und 50 Neutronen „doppelt magisch“ und daher für die Kernphysik besonders interessant.
Indem sie Xenon-124 Ionen mit beinahe Lichtgeschwindigkeit auf ein Beryllium-Blech schossen, gelang es einem Physikerteam der TU München, des Exzellenzclusters Universe und der GSI in Darmstadt, Sn-100 herzustellen und ihren Zerfall zu analysieren. Mit den eigens entwickelten Teilchendetektoren konnten sie, Halbwertszeit und Zerfallsenergie des Zinn-100 und seiner Folgeprodukte vermessen und unter anderem eine Voraussage theoretischer Physiker bestätigen, dass Zinn-100 von allen Atomkernen den „schnellsten“ Beta-Zerfall hat. Dabei spaltet der Kern ein Neutron, ein Positron und ein Neutrino ab und wird zu einem Isotop des Elements Indium.

Demnächst soll das Experiment am Forschungszentrum RIKEN in Japan wiederholt werden. Dort gibt es inzwischen eine höhere Strahlintensität, die noch präzisere Messungen ermöglicht. Ziel der Forschungsarbeiten ist ein besseres Verständnis der Vorgänge bei der Entstehung der schweren Elemente in Explosionen an der Oberfläche kompakter Sterne. Außerdem hofft man, aus den Messungen Rückschlüsse auf die Neutrinomasse ableiten zu können.

Die Arbeit wurde unterstützt mit Mitteln des BMBF, der GSI, des DFG-Exzellenzclusters Origin and Structure of the Universe, der EU (I3-EURONS) und des Swedish Research Council.

Originalpublikation:

Superallowed Gamow-Teller Decay of the Doubly Magic Nucleus Sn-100, Christoph B. Hinke et al., Nature, 21. Juni 2012 – DOI: 10.1038/nature11116

Kontakt:

Dr. Thomas Faestermann
Technische Universität München
Physik Department, E12
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49-89-28912438 – Fax: +49-89-28912297
E-Mail: thomas.faestermann@tum.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de
http://www.e12.physik.tu-muenchen.de/

Weitere Berichte zu: GSI Kernphysik Nature Immunology Neutron Physik ProTon Schlüsselexperiment Sn-100 Universe Zinn-100

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?
16.07.2018 | Forschungsverbund Berlin e.V.

nachricht Erste Beweise für Quelle extragalaktischer Teilchen
13.07.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Feinstaub macht Bäume anfälliger gegen Trockenheit

16.07.2018 | Biowissenschaften Chemie

Wie Krebszellen Winterschlaf halten

16.07.2018 | Biowissenschaften Chemie

Mister Raney bekommt Konkurrenz - Ein neuer Katalysator auf Nickel-Basis nutzt Nano-Strukturen

16.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics