Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zeptosekunden-Stoppuhr für den Mikrokosmos

07.11.2016

Physiker der Ludwig-Maximilians-Universität und des Max-Planck Instituts für Quantenoptik haben erstmals ein inneratomares Geschehen mit einer Genauigkeit von Billionsteln einer Milliardstel Sekunde aufgezeichnet.

Wenn Licht auf Elektronen in Atomen trifft, dann verändert sich deren Zustand in unvorstellbar kurzen Zeiträumen. Ein solches Phänomen, nämlich das der Photoionisation, bei dem ein Elektron ein Heliumatom nach Lichtanregung verlässt, haben Laserphysiker der Ludwig-Maximilians-Universität (LMU) und des Max-Planck Instituts für Quantenoptik (MPQ) erstmals mit Zeptosekunden-Genauigkeit gemessen.


Nachdem ein Lichtteilchen ein Elektron aus einem Heliumatom entfernt hat, kann man die Aufenthaltswahrscheinlichkeiten des verbliebenen Elektrons berechnen.

Schultze/Ossiander

Eine Zeptosekunde ist ein Billionstel einer Milliardstel Sekunde (10-21 Sekunden). Das ist die höchste Genauigkeit der Zeitbestimmung eines Ereignisses im Mikrokosmos, die jemals erreicht wurde und zudem die erste absolute Bestimmung des Zeitpunktes der Photoionisation.

Trifft Licht auf die zwei Elektronen eines Heliumatoms, dann muss man unheimlich schnell sein um das Geschehen zu beobachten. Abgesehen von den ultrakurzen Zeiträumen, in denen sich Veränderungen abspielen, kommt die Quantenmechanik ins Spiel.

Trifft ein Lichtteilchen (Photon) auf die zwei Elektronen, kann es nämlich sein, dass die gesamte Energie des Photons entweder von dem einen Elektron aufgenommen wird oder aber dass eine Aufteilung stattfindet. In jedem Fall der Energieübertragung aber verlässt ein Elektron das Heliumatom. Diesen Vorgang nennt man Photoemission oder photoelektrischen Effekt. Albert Einstein hatte ihn Anfang des letzten Jahrhunderts entdeckt.

Von dem Zeitpunkt an, an dem das Photon mit den Elektronen wechselwirkt ,bis zu dem Zeitpunkt, an dem ein Elektron das Atom verlässt, dauert es zwischen fünf und fünfzehn Attosekunden (1 as ist 10-18 Sekunden). Das haben die Physiker bereits vor einigen Jahren herausgefunden (Science, 25. Juni 2010).

Mit ihrer nun verbesserten Messmethode können die Laserphysiker das Geschehen bis auf 850 Zeptosekunden genau messen. Die Forscher schickten zur Anregung der Elektronen einen Attosekunden langen extrem ultravioletten Lichtblitz (XUV) auf ein Heliumatom. Gleichzeitig ließen sie einen zweiten infraroten Laserpuls auftreffen, der rund vier Femtosekunden dauerte (1fs ist 10-15 Sekunden). Sobald das Elektron durch die Anregung des XUV–Lichtblitzes das Atom verlassen hatte, wurde es vom infraroten Laserpuls erfasst.

Je nachdem wie gerade das elektromagnetische Feld dieses Pulses zum Zeitpunkt der Erfassung beschaffen war, wurde das Elektron beschleunigt oder abgebremst. Über diese Geschwindigkeitsveränderung konnten die Physiker mit Zeptosekunden-Genauigkeit die Photoemission erfassen. Zudem konnten die Forscher erstmals bestimmen, wie die Energie des einfallenden Photons sich auf die beiden Elektronen des Heliumatoms in wenigen Attosekunden vor der Emission eines Teilchens quantenmechanisch verteilt hatte.

„Das Verständnis dieser Vorgänge im Heliumatom bietet uns für künftige Experimente ein enorm verlässliche Basis“, erklärt Martin Schultze, der Leiter der Experimente am MPQ. Die Physiker konnten nämlich die Präzesion ihrer Experimente bis auf Zeptosekunden-Genauigkeit mit den theoretischen Vorhersagen ihrer Kollegen vom Institut für Theoretische Physik der TU Wien korrelieren.

Mit seinen zwei Elektronen ist Helium das einzige System, das sich vollständig quantenmechanisch berechnen lässt. Damit bietet es sich geradezu an, Theorie und Experiment unter einen Hut zu bringen. „Wir können jetzt in dem verschränkten System aus Elektron und ionisiertem Helium-Mutteratom aus unseren Messungen die komplette wellenmechanische Beschreibung des Systems ableiten“, sagt Schultze.

Mit ihren Metrologie-Experimenten in Zeptosekunden-Zeitdimensionen haben die Laserphysiker damit ein weiteres wichtiges Puzzlestück in der Quantenmechanik des Heliumatoms an die richtige Stelle manövriert und die Messgenauigkeit im Mikrokosmos erstmal in ganz neue Dimensionen vorangetrieben. Thorsten Naeser

Bildbeschreibung:
Nachdem ein Lichtteilchen ein Elektron aus einem Heliumatom entfernt hat, kann man die Aufenthaltswahrscheinlichkeiten des verbliebenen Elektrons berechnen. Je heller die Bereiche im Bild dargestellt sind desto wahrscheinlicher ist sein Aufenthaltsort rund um den hier nicht sichtbaren Atomkern. Bild: Schultze/Ossiander

Originalpublikation:
M. Ossiander, F. Siegrist, V. Shirvanyan, R. Pazourek, A. Sommer, T. Latka, A. Guggenmos, S. Nagele, J. Feist, J. Burgdörfer, R. Kienberger and M. Schultze
Attosecond correlation dynamics
Nature physics, 7. November 2016, doi: 10.1038/nphys3941

Weitere Informationen erhalten Sie von:
Dr. Martin Schultze
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 89 32905- 236
Fax: +49 89 32905-649
E-Mail: Martin.Schultze@mpq.mpg.de

Prof. Ferenc Krausz
Ludwig-Maximilians-Univ. München, Fakultät f. Physik
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 89 32905-612
E-Mail: krausz@lmu.de
http://www.attoworld.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spintronik: Forscher zeigen, wie sich nichtmagnetische Materialien magnetisch machen lassen
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Erster radioastronomischer Nachweis eines extrasolaren Planetensystems um einen Hauptreihenstern
05.08.2020 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

Eine entscheidende Ergänzung zum Stanzen von Kontakten erarbeiteten Wissenschaftlerinnen und Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT. Die Aachener haben im Rahmen des EFRE-Forschungsprojekts ScanCut zusammen mit Industriepartnern aus Nordrhein-Westfalen ein hybrides Fertigungsverfahren zum Laserschneiden von dünnwandigen Metallbändern entwickelt, wodurch auch winzige Details von Kontaktteilen umweltfreundlich, hochpräzise und effizient gefertigt werden können.

Sie sind unscheinbar und winzig, trotzdem steht und fällt der Einsatz eines modernen Fahrzeugs mit ihnen: Die Rede ist von mehreren Tausend Steckverbindern im...

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: Elektrogesponnene Vliese mit gerichteten Fasern für die Sehnen- und Bänderrekostruktion

Sportunfälle und der demografische Wandel sorgen für eine gesteigerte Nachfrage an neuen Möglichkeiten zur Regeneration von Bändern und Sehnen. Eine Kooperation aus italienischen und deutschen Wissenschaftler*innen forschen gemeinsam an neuen Materialien, um dieser Nachfrage gerecht zu werden.

Dem Team ist es gelungen elektrogesponnene Vliese mit hochgerichteten Fasern zu generieren, die eine geeignete Basis für Ersatzmaterialien für Sehnen und...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: Neue Strategie gegen Osteoporose

Ein internationales Forschungsteam hat einen neuen Ansatzpunkt gefunden, über den man möglicherweise den Knochenabbau bei Osteoporose verringern und die Knochengesundheit erhalten kann.

Die Osteoporose ist die häufigste altersbedingte Knochenkrankheit. Weltweit sind hunderte Millionen Menschen davon betroffen. Es wird geschätzt, dass eine von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovationstage 2020 – digital

06.08.2020 | Veranstaltungen

Innovationen der Luftfracht: 5. Air Cargo Conference real und digital

04.08.2020 | Veranstaltungen

T-Shirts aus Holz, Möbel aus Popcorn – wie nachwachsende Rohstoffe fossile Ressourcen ersetzen können

30.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Türsteher im Gehirn

06.08.2020 | Biowissenschaften Chemie

Kognitive Energiesysteme: Neues Kompetenzzentrum sucht Partner aus Wissenschaft und Wirtschaft

06.08.2020 | Energie und Elektrotechnik

Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

06.08.2020 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics