Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zeitmessung im Quantentunnel

31.07.2017

Beim quantenmechanischen Tunneleffekt benötigen Teilchen einige Attosekunden, um eine Energiebarriere zu überwinden

Harry Potter kann vieles, was wir nicht können, auch durch Mauern gehen: Um zum Gleis 93/4 zu gelangen, wo der Zug zur Zauberschule Hogwarts hält, schlüpfen er und seine Mitschüler durch eine Wand zwischen den Gleisen neun und zehn. Was im wirklichen Leben unmöglich ist, gehört in der verrückten Welt der Quantenphysik zur Normalität: Teilchen wie etwa Elektronen können eigentlich unüberwindbare Energiebarrieren durchdringen.


Über oder durch den Energiewall? Klassische Teilchen können eine Energiebarriere nur überwinden, wenn sie mit Energieaufwand darüber gehoben werden. Quantenteilchen haben auch eine Chance, den Wall hinter sich zu lassen, wenn sie dafür eigentlich nicht genügend Energie besitzen – sie können durch das Hindernis tunneln.

© MPI für Quantenoptik


Tunneleffekt in einem zirkular polarisierten Laserfeld: Links: Das Elektron befindet sich in einem Potentialtrichter, der vom elektrischen Feld des Atomkerns und dem des Laserimpulses erzeugt wird. Deswegen dreht sich der Trichter (hier gegen den Uhrzeigersinn). Nach der Laseranregung (Mitte) durchtunnelt das Elektron die Barriere. Rechts: Simple-Man und Wigner-Modell sagen unterschiedliche Elektronenbahnen voraus.

© PRL 2017 / MPI für Kernphysik

Physiker sprechen vom quantenmechanischen Tunneleffekt. Jetzt gelang Forschern des Max-Planck-Instituts für Kernphysik in Heidelberg erstmals der Nachweis, dass Elektronen für den Tunnelvorgang eine endliche Zeit benötigen. Obwohl das Phänomen seit nahezu hundert Jahren bekannt ist, war bislang unklar, ob ein Teilchen für das Tunnelbohren Zeit benötigt oder ob es die Barriere ohne Zeitverlust durchdringen kann.

Der Tunneleffekt spielt nicht nur eine Rolle in ausgeklügelten Experimenten von Quantenphysikern, sondern auch in weithin bekannten Prozessen, etwa beim radioaktiven Zerfall: Im Innern eines Atomkerns sind die Protonen und Neutronen durch ein starkes Feld aneinander gebunden, das sie mit einer Energiebarriere einschließt. Man kann sich dies entfernt vorstellen wie Erbsen in einer Rührschüssel.

Nach der klassischen Physik könnten die Teilchen den Energiewall nicht überwinden und aus dem Kern verschwinden. Nach den Gesetzen der Quantenphysik besteht aber eine gewisse Wahrscheinlichkeit, dass eines der Teilchen den Wall durchdringen kann. Befindet es sich außerhalb der Barriere, verlässt es den Kern, der damit radioaktiv zerfallen ist.

An diesem zufällig auftretenden Kernprozess lässt sich nicht feststellen, ob das Teilchen Zeit benötigt oder nicht, um durch den vom Kern aufgebauten Wall zu tunneln. Selbst Lehrbücher geben hierüber keine Auskunft. Nun hat die Heidelberger Gruppe einen Tunnelvorgang aber gezielt eingeleitet und dessen Dauer ermittelt.

Teilchen könnten instantan tunneln oder in einer gewissen Zeit

Als Untersuchungsobjekt dienten den Forschern Atome. Hierin erzeugt der Kern ein elektrisches Feld, das die ihn umgebenden Elektronen einschließt. Die Elektronen befinden sich gewissermaßen am Fuß eines sehr dicken Energiewalls, weswegen die Wahrscheinlichkeit, diesen zu durchtunneln, nahezu null ist. Deswegen sind Atome stabil. Wenn die Physiker allerdings einen kurzen Laserpuls auf die Teilchen einstrahlen, überlagert sich dessen periodisch schwingendes elektrisches Feld dem des Kerns. So verringert es für eine kurze Zeit die Breite des Walls, sodass die Wahrscheinlichkeit, den Wall zu durchtunneln, für ein gebundenes Elektron sehr groß wird. Tut es dies, so fliegt es vom Laserfeld geleitet fort und wird von einem Detektor nachgewiesen.

In einem solchen Experiment die Tunnelzeit zu bestimmen, erfordert jedoch einige Anstrengungen. Eine Gruppe von Theoretikern um Karen Hatsagortsyan in der Abteilung von Christoph Keitel hat diesen Vorgang zunächst theoretisch untersucht. Die einfachste Betrachtung, Simple-man-Model genannt, nimmt an, dass das Tunneln keine Zeit benötigt, das Elektron also instantan am Tunnelausgang und mit der Geschwindigkeit Null erscheint. Eine zweite Möglichkeit besteht darin, dass das Elektron eine bestimmte Zeit benötigt, um durch die Energiebarriere zu tunneln. Diese Theorie veröffentlichte 1955 der Physiker und Nobelpreisträger Eugene Wigner.

Der Tunnelvorgang könnte bis zu 180 Attosekunden dauern

Zu berechnen, wie viel Zeit ein Elektron nach dem Modell von Eugene Wigner bei ihrem Experiment im Quantentunnel verbringen würde, war für die Physiker nicht einfach. „Die quantenmechanischen Berechnungen sind sehr aufwendig", kommentiert Christoph Keitel die Aufgabe. „Wir mussten das Wigner-Modell stark weiterentwickeln und sehr spezifische Details unseres Experiments berücksichtigen."

Wie das Ergebnis zeigt, braucht das Elektron eine gewisse Zeit, um die Barriere zu durchdringen, wenn es auch ein rasanter Sprint ist: „Nach unseren Lösungen benötigt das Elektron im Fall des Wigner-Modells im Bereich der verwendeten Laserintensitäten 80 bis 180 Attosekunden, um die Barriere zu durchtunneln", so Enderalp Yakaboylu, der die Rechnungen ausführte. Eine Attosekunde ist der milliardste Teil einer milliardstel Sekunden.

Zirkular polarisiertes Licht dreht den Energietopf des Atoms

Ebenso knifflig wie die Berechnung derart rasanter Vorgänge ist deren Messung. Sie erfordert eine extrem genaue Apparatur, wie sie Robert Moshammer in den vergangenen Jahren am Max-Planck-Institut für Kernphysik aufgebaut hat. Zudem mussten die Forscher einen ausgefeilten Trick anwenden, um herauszufinden, ob das Simple-Man- oder das Wigner-Modell die physikalische Realität beschreiben: Sie strahlten auf die Atome Laserpulse, die zirkular polarisiert waren. Das heißt, das elektrische Feld der Lichtwelle schwankte nicht nur sinusförmig, sondern drehte sich zudem. Wenn sich ein solches rotierendes Laserfeld dem elektrischen Feld des Atoms überlagert, dreht sich der gesamte Energietopf, in dem sich die Elektronen befinden.

Der Laserpuls regt zudem eines der Elektronen an und startet damit die Uhr. Das Teilchen durchtunnelt daraufhin die Energiebarriere und tritt an einer bestimmten Stelle aus. Wenn das Elektron hierfür Zeit benötigt, dann hat sich der Energietopf seit dem Start des Tunnelvorgangs ein wenig weitergedreht, und das Elektron tritt an einer anderen Stelle und in einem anderen Winkel aus, als wenn es ohne Zeitverlust tunneln würde. Diesen winzigen Winkelunterschied galt es zu messen.

Bei Argon und Krypton unterscheiden sich die Winkel der Flugbahnen

„Eine der größten Herausforderungen bestand in der exakten Winkelmessung", sagt Thomas Pfeifer. Vor allem ist es extrem schwierig, den Winkel der Elektronbahnen absolut zu messen. Dieses Problem umgingen die Physiker mit einem entscheidenden Kniff: Sie untersuchten gleichzeitig ein Gemisch aus Argon- und Kryptonatomen, die sich in Barrierenhöhe und Tunnelstreckenlänge ein wenig unterscheiden.

Im Simple-Man-Modell spielt dieser Unterschied keine Rolle; beide Atomsorten verhalten sich praktisch gleich, da die Tunnelzeit immer gleich Null ist. Folgen die Elektronen aber dem Wigner-Modell, absolvieren sie den Sprint durch den Quantentunnel verschiedenen Zeiten, was sich in leicht voneinander abweichenden Winkeln der Elektronflugbahnen äußert. Der Winkel zwischen diesen beiden Flugbahnen lässt erheblich genauer messen, als der absolute Winkel einer einzigen Flugbahn.

„Wir haben das Gasgemisch mit 3000 Pulsen pro Sekunde beschossen und konnten Schuss für Schuss analysieren, in welcher Atomsorte der Tunneleffekt ausgelöst wurde", so Nicolas Camus, der die Messungen durchführte. Das Ergebnis ist eindeutig: Die Messdaten bestätigen das Wigner-Modell quantitativ und sind mit dem instantanen Tunnelvorgang des Simple-Man-Modells nicht vereinbar. Damit beenden die Heidelberger Physiker eine jahrzehntelange Diskussion und schließen eine Lücke in den Lehrbüchern der Quantenphysik.


Ansprechpartner

Honorarprofessor Dr. Christoph H. Keitel
Max-Planck-Institut für Kernphysik, Heidelberg
Telefon: +49 6221 516-150

Fax: +49 6221 516-152
E-Mail: keitel@mpi-hd.mpg.de

Prof. Dr. Thomas Pfeifer
Max-Planck-Institut für Kernphysik, Heidelberg
Telefon: +49 6221 516-380

Fax: +49 6221 516-802
E-Mail: Thomas.Pfeifer@mpi-hd.mpg.de

Originalpublikation
Nicolas Camus, Enderalp Yakaboylu, Lutz Fechner, Michael Klaiber, Martin Laux, Yonghao Mi, Karen Z. Hatsagortsyan, Thomas Pfeifer, Christoph H. Keitel und Robert Moshammer

Experimental Evidence for Quantum Tunneling Time

Physical Review Letters, 14. Juli 2017; doi: 10.1103/PhysRevLett.119.023201

Honorarprofessor Dr. Christoph H. Keitel | Max-Planck-Institut für Kernphysik, Heidelberg
Weitere Informationen:
https://www.mpg.de/11414673/quantenmechanisch-tunneleffekt-zeit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics