Wissenschaftler der FU Berlin und des CEMES Toulouse erforschen mechanische Kristalleigenschaften auf der atomaren Skala

Dies ist bedeutsam für künftige Verfahren in den Materialwissenschaften; Kochsalzstrukturen sind von besonderem Interesse, da sie als elektrische Isolatoren innerhalb von Schaltkreisen einer zukünftigen Molekularen Elektronik dienen könnten. Die Ergebnisse wurden in der jüngsten Ausgabe der renommierten Zeitschrift „Physical Review Letters“ veröffentlicht.

Mithilfe des Verfahrens lassen sich Nano-Kristallite kontrolliert schneiden und brechen sowie gezielt positionieren. Darüber hinaus konnten die Forscher zeigen, dass das aus der makroskopischen Physik seit mehr als 300 Jahren bekannte Hookesche Gesetz auch auf der atomaren Skala, bei der Verbiegung von Nanostrukturen, gültig ist. Dem Hookeschen Gesetz zufolge dehnt sich ein makroskopischer Körper proportional zu der auf ihn wirkenden Kraft aus.

Das mechanische Verhalten von Kristallen unter Belastung reicht von elastischer Verformung bis hin zu dauerhafter Veränderung. Während Materialien mit makroskopischen Abmessungen in Bezug auf ihr mechanisches Verhalten gut erforscht sind, gibt es wegen der experimentellen Herausforderungen bisher keine Untersuchungen auf der Skala weniger Nanometer – ein nm entspricht einem Milliardstel Meter –, nahe dem Bereich der atomaren Abstände im Kristall. Dabei interessiert zum einen die Ausbreitung von elastischer Verformung innerhalb kristalliner Nanostrukturen sowie der Übergang zum Brechen. Zum anderen bietet die Fähigkeit zur kontrollierten Verformung die Möglichkeit, spezifische Strukturen auf der atomaren Ebene aufzubauen.

Die Wissenschaftler ließen die Kochsalz-Kristallite mit Abmessungen im Bereich weniger Nanometer im Ultrahochvakuum auf einem Kupferkristall wachsen. Anschließend wurde die Spitze eines Rastertunnelmikroskops verwendet, um die Kristallite auf der Oberfläche entweder zu verschieben, wie mit einem Messer zu schneiden – wobei sich Kanäle mit der Breite weniger Atome ergeben – oder zu brechen. Beim Brechen der Kristallite kommt es zuerst zu einer elastischen Verbiegung und im Anschluss zum Bruch entlang einer kristallinen Vorzugsrichtung, also zu plastischer Verformung. Rechnungen machen die Verteilung der elastischen Verspannung im Kristallit deutlich und zeigen, dass die elastische Verformung dem seit dem 17. Jahrhundert bekannten Hookeschen Gesetz folgt.

Das Verständnis mechanischer Eigenschaften auf der atomaren Skala ist von großer Bedeutung für Materialeigenschaften unter Belastung; die Reaktion reicht von elastischer Verformung bis zur Ausbildung von Versetzungslinien und permanenter Veränderung. Der in der Forschungsarbeit erfolgreich umgesetzte Ansatz eröffnet eine Möglichkeit, das mechanische Verhalten von Materialien in kleinsten Dimensionen zu studieren. Darüber hinaus konnten die Nano-Kristallite gezielt strukturiert werden, was in Zukunft nach Einschätzung der Wissenschaftler das Potenzial zum gezielten Aufbau von Strukturen auf der atomaren Ebene bietet.

Weitere Informationen erteilt Ihnen gern:
Leonhard Grill, Institut für Experimentalphysik,
Telefon: 030 / 838-52226; E-Mail: grill@physik.fu-berlin.de
Im Internet: http://users.physik.fu-berlin.de/~grill
Publikation:
Ch. Bombis, F. Ample, J. Mielke, M. Mannsberger, C. J. Villagómez, Ch. Roth, C. Joachim, and L. Grill: „Mechanical behavior of nanocrystalline NaCl islands on Cu(111)”

“Physical Review Letters” (Ausgabe vom 7. Mai 2010); Internet: http://prl.aps.org

Media Contact

Carsten Wette idw

Weitere Informationen:

http://www.fu-berlin.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer