Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler der FU Berlin und des CEMES Toulouse erforschen mechanische Kristalleigenschaften auf der atomaren Skala

07.05.2010
Mitarbeitern der Forschergruppe von Experimentalphysiker Leonhard Grill von der Freien Universität Berlin ist es in Zusammenarbeit mit theoretischen Physikern um Christian Joachim vom Centre d'Elaboration de Matériaux et d'Etudes Structurales (CEMES) in Toulouse im Rahmen des europäischen Forschungsprojektes „Pico-Inside“ erstmals gelungen, nur wenige Atomlagen dünne kristalline Kochsalz-Filme zu strukturieren.

Dies ist bedeutsam für künftige Verfahren in den Materialwissenschaften; Kochsalzstrukturen sind von besonderem Interesse, da sie als elektrische Isolatoren innerhalb von Schaltkreisen einer zukünftigen Molekularen Elektronik dienen könnten. Die Ergebnisse wurden in der jüngsten Ausgabe der renommierten Zeitschrift „Physical Review Letters“ veröffentlicht.

Mithilfe des Verfahrens lassen sich Nano-Kristallite kontrolliert schneiden und brechen sowie gezielt positionieren. Darüber hinaus konnten die Forscher zeigen, dass das aus der makroskopischen Physik seit mehr als 300 Jahren bekannte Hookesche Gesetz auch auf der atomaren Skala, bei der Verbiegung von Nanostrukturen, gültig ist. Dem Hookeschen Gesetz zufolge dehnt sich ein makroskopischer Körper proportional zu der auf ihn wirkenden Kraft aus.

Das mechanische Verhalten von Kristallen unter Belastung reicht von elastischer Verformung bis hin zu dauerhafter Veränderung. Während Materialien mit makroskopischen Abmessungen in Bezug auf ihr mechanisches Verhalten gut erforscht sind, gibt es wegen der experimentellen Herausforderungen bisher keine Untersuchungen auf der Skala weniger Nanometer – ein nm entspricht einem Milliardstel Meter –, nahe dem Bereich der atomaren Abstände im Kristall. Dabei interessiert zum einen die Ausbreitung von elastischer Verformung innerhalb kristalliner Nanostrukturen sowie der Übergang zum Brechen. Zum anderen bietet die Fähigkeit zur kontrollierten Verformung die Möglichkeit, spezifische Strukturen auf der atomaren Ebene aufzubauen.

Die Wissenschaftler ließen die Kochsalz-Kristallite mit Abmessungen im Bereich weniger Nanometer im Ultrahochvakuum auf einem Kupferkristall wachsen. Anschließend wurde die Spitze eines Rastertunnelmikroskops verwendet, um die Kristallite auf der Oberfläche entweder zu verschieben, wie mit einem Messer zu schneiden – wobei sich Kanäle mit der Breite weniger Atome ergeben – oder zu brechen. Beim Brechen der Kristallite kommt es zuerst zu einer elastischen Verbiegung und im Anschluss zum Bruch entlang einer kristallinen Vorzugsrichtung, also zu plastischer Verformung. Rechnungen machen die Verteilung der elastischen Verspannung im Kristallit deutlich und zeigen, dass die elastische Verformung dem seit dem 17. Jahrhundert bekannten Hookeschen Gesetz folgt.

Das Verständnis mechanischer Eigenschaften auf der atomaren Skala ist von großer Bedeutung für Materialeigenschaften unter Belastung; die Reaktion reicht von elastischer Verformung bis zur Ausbildung von Versetzungslinien und permanenter Veränderung. Der in der Forschungsarbeit erfolgreich umgesetzte Ansatz eröffnet eine Möglichkeit, das mechanische Verhalten von Materialien in kleinsten Dimensionen zu studieren. Darüber hinaus konnten die Nano-Kristallite gezielt strukturiert werden, was in Zukunft nach Einschätzung der Wissenschaftler das Potenzial zum gezielten Aufbau von Strukturen auf der atomaren Ebene bietet.

Weitere Informationen erteilt Ihnen gern:
Leonhard Grill, Institut für Experimentalphysik,
Telefon: 030 / 838-52226; E-Mail: grill@physik.fu-berlin.de
Im Internet: http://users.physik.fu-berlin.de/~grill
Publikation:
Ch. Bombis, F. Ample, J. Mielke, M. Mannsberger, C. J. Villagómez, Ch. Roth, C. Joachim, and L. Grill: „Mechanical behavior of nanocrystalline NaCl islands on Cu(111)”

“Physical Review Letters” (Ausgabe vom 7. Mai 2010); Internet: http://prl.aps.org

Carsten Wette | idw
Weitere Informationen:
http://www.fu-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blindgänger mit Laser entschärft: Erfolgreicher Feldversuch zum Projektende
16.10.2019 | Laser Zentrum Hannover e.V.

nachricht Rätsel gelöst: Das Quantenleuchten dünner Schichten
15.10.2019 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

Bauingenieure im Dialog 2019: Vorträge stellen spannende Projekte aus dem Spezialtiefbau vor

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

17.10.2019 | Biowissenschaften Chemie

Was unter dem Yellowstone-Vulkan passiert

17.10.2019 | Geowissenschaften

Für höhere Reichweiten von E-Mobilen: Potentiale von Leichtbauwerkstoffen besser ausschöpfen

17.10.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics