Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

14.08.2017

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der Festkörperphysik seit mehr als 30 Jahren dominiert. Die Studie von Nicoletti et al wurde im PNAS veröffentlicht.


Intensiver Laserpulse (hellblaue Welle) regen eine Bismutatverbindung an, in der Ladungsdichtewellen (links) mit Supraleitung (rechts) koexistieren.

Jörg Harms, MPSD

Seit dem Beginn des 20. Jahrhunderts ist Supraleitung zunächst in einigen Metallen bei Temperaturen, die nur wenig über dem absoluten Nullpunkt (-273° C) liegen, beobachtet worden. Erst in den 1980ern gelang es Physikern, neue keramik-basierte Verbindungen zu synthetisieren, die fähig waren, Strom ohne jeglichen Verlust bei Temperaturen bis zu 138 K (-135° C) zu leiten. Diese wurden Hochtemperatur-Supraleiter genannt.

Die bekanntesten und meisterforschten Hochtemperatur-Supraleiter sind Kuprate (Kupferoxid-Verbindungen), welche die höchsten Sprungtemperaturen besitzen (d.h. die Temperatur, unter welcher Supraleitung möglich ist) und daher hohes Potential für zukünftige Anwendungen bieten. Dennoch existiert eine große Vielfalt anderer Verbindungen, die ebenfalls Supraleitung bei relativ hohen Temperaturen aufzeigen, unter ihnen die kürzlich entdeckten Eisenpniktide.

Noch fehlt eine allgemeine Theorie, welches es ermöglicht, die Physik hinter dem Phänomen der Hochtemperatur-Supraleitung zu beschreiben. Trotzdem ist fast allen Hochtemperatur-Supraleitern gemeinsam, dass sie die widerstandslose Supraleitung in der Nähe von anderen exotischen Materiezuständen, wie den Ladungsdichtewellen, entwickeln.

All diese Materialien können von einer Phase in die andere gelenkt werden und möglicherweise kann Supraleitung durch chemische Dotierung, externen Druck oder Magnetfelder erreicht werden. Noch existiert jedoch kein genaues Verständnis der subtilen Wechselbeziehung dieser Phasen und in einigen Fällen gibt es Beweise, dass die Ladungsdichtewellen und Supraleitung sogar mikroskopisch koexistieren können.

Vor diesem Hintergrund haben Experimente, in denen die Materialien mit ultrakurzen, intensiven Laserpulsen stimuliert wurden (bis zu ein paar hundert Femtosekunden), neue Erkenntnisse der Physik dieser Systeme erbracht. Die Gruppe von(?) Andrea Cavalleri am MPSD in Hamburg hat beispielsweise schon gezeigt, dass mithilfe solcher Pulse die Ladungsdichtewellen in einigen Kupratverbindungen zerstört und dadurch Supraleitung bei höheren Temperaturen – möglicherweise bis zu Raumtemperatur - erreicht werden kann. (Siehe Artikel von W. Hu, Nature Materials, 13, 705–711 and R. Mankowsky, Nature 516, 71–73, unten angegeben.)

In der jetzigen Studie untersuchten Nicoletti, Cavalleri et al verschiedene Verbindungen aus der wenig erforschten Familie der Bismutate. Diese Supraleiter wurden in den 1970ern entdeckt, noch vor den Kupraten, aber aufgrund ihrer weit niedrigeren Sprungtemperaturen (circa 30 K) wurde ihnen weniger Aufmerksamkeit geschenkt. Sie besitzen viele Gemeinsamkeiten mit, aber auch viele Unterschiede zu den bekannteren Systemen. Insbesondere die Basisverbindung BaBiO(3) besitzt eine robuste Ladungsdichtewelle, aus der Supraleitung durch chemische Dotierung, d.h. durch die Ersetzung von Wismut durch andere Atome, entsteht.

Die in der vorliegenden Arbeit untersuchten Probenkristalle der Zusammensetzung BaPb(1-x)BixO(3), d.h. mit unterschiedlicher zugesetzter Blei- (Pb) Konzentration “x”, wurden von Ian R. Fisher und P. Giraldo-Gallo an der Stanford Universität in Kalifornien, USA, hergestellt.

Die Forscher in Hamburg führten Experimente an diesen Kristallen durch, in denen sie diese Kristalle mit sehr kurzen und intensiven Laserpulsen anregten. Sie maßen, wie sich ihre Leitungsfähigkeit übergangsweise veränderte und innerhalb weniger Pikosekunden zu den Ausgangswerten zurückkehrte. Durch die Analyse der Abhängigkeit dieses Signals nach Frequenz, Temperatur und Bleikonzentration konnten sie es eindeutig mit einer durch das Laserfeld verursachte Veränderung der Ladungsdichtewellen verbinden.

„Bemerkenswerterweise,“ sagt Nicoletti, „konnten wir diese Reaktion nicht nur in der Basisverbindung BaBiO(3) messen, wo die Existenz einer Ladungsdichtewelle bekannt ist, sondern auch in der bleidotierten, supraleitenden Verbindung. Dieses Ergebnis ist ein indirekter Beweis der Koexistenz von Ladungsdichtewellen und Supraleitung in demselben Material, ein Zustand der in dieser Materialfamilie bisher diskutiert aber nie nachgewiesen worden ist.“

Die Wissenschaftler konnten außerdem die Energieskalen, die mit der Veränderung der Ladungsdichtewellen verbunden waren, genau bestimmen und so neue Informationen über das dynamische Wechselspiel mit der Supraleitung in den Bismutaten liefern.

Diese Ergebnisse sind besonders wichtig, da kürzlich Ladungsdichtewellen in mehreren Kupratsupraleitern gefunden wurden, was auf eine überraschende Gemeinsamkeit zwischen einigen Aspekten dieser Materialien hinweist. Das jetzige Experiment ist ein weiteres Beispiel, wie Licht zur Untersuchung, Kontrolle und Manipulation von Materialien genutzt werden kann. Ein letztendliches Ziel dieses Forschungsbereichs ist es, eine Art von Rezept für die Entwicklung neuer Materialien zu entwerfen, um neue Funktionalitäten bei zunehmend höheren Temperaturen zu entwickeln.

Die Studie wurde vom ERC Synergy Grant „Frontiers in Quantum Materials’ Control“ (Q-MAC), dem Hamburg Centre for Ultrafast Imaging (CUI) und dem Prioritätsprogramm SFB925 der Deutschen Forschungsgemeinschaft unterstützt. Die Experimente wurden in den Laboren des Center for Free-Electron Laser Science (CFEL) ausgeführt – einer Kooperation des Deutschen Elektronen-Synchrotrons DESY, der Max-Planck-Gesellschaft und der Universität Hamburg. Die Studie wurde in enger Zusammenarbeit mit Wissenschaftlern der Stanford University, California, USA, zusammengestellt.

Weitere Informationen:

https://dx.doi.org/10.1073/pnas.1707079114 - Artikel zur Studie (PNAS)
http://www.mpsd.mpg.de/116013/1412-vibes-for-superc-cavalleri - Superconductivity without cooling (2014)
http://www.mpsd.mpg.de/84292/2014-05-hint-for-sc-at-room-temperature - A first hint for superconductivity at room temperature (2014)

Jenny Witt | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuer Blick auf molekulare Prozesse
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie aus Staub Planeten entstehen
21.11.2018 | Technische Universität Braunschweig

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste Diode für Magnetfelder

Innsbrucker Quantenphysiker haben eine Diode für Magnetfelder konstruiert und im Labor getestet. Das von den Forschungsgruppen um den Theoretiker Oriol Romero-Isart und den Experimentalphysiker Gerhard Kirchmair entwickelte Bauelement könnte eine Reihe neuer Anwendungen ermöglichen.

Elektrische Dioden sind wichtige elektronische Bauteile, die elektrischen Strom in eine Richtung leiten, die Stromleitung in der anderen Richtung aber...

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Millimeterwellen für die letzte Meile

ETH-Forscher haben einen Modulator entwickelt, mit dem durch Millimeterwellen übertragene Daten direkt in Lichtpulse für Glasfasern umgewandelt werden können. Dadurch könnte die Überbrückung der «letzten Meile» bis zum heimischen Internetanschluss deutlich schneller und billiger werden.

Lichtwellen eigenen sich wegen ihrer hohen Schwingungsfrequenz hervorragend zur schnellen Übertragung von Daten.

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Podiumsdiskussion zur 11. Internationalen MES-Tagung in Hannover hochkarätig besetzt

21.11.2018 | Veranstaltungen

Hüftprothese: Minimalinvasiv oder klassisch implantieren? Implantatmodell wichtiger als OP-Methode

21.11.2018 | Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Blick auf molekulare Prozesse

21.11.2018 | Physik Astronomie

Wechsel zu Carbon Infrarot-Strahlern von Heraeus halbiert die Trocknungszeit für Siebdruck auf T-Shirts

21.11.2018 | Energie und Elektrotechnik

Wie aus Staub Planeten entstehen

21.11.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics