Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winzige Teilchen bringen Rostocker Chemikern großen Erfolg

21.02.2014
Institut nutzt gigantisches Mikroskop in Grenoble

Rostocker Forschern ist es unter Leitung des Physikochemikers Professor Joachim Wagner erstmals gelungen, die Bewegung winziger, stäbchenförmiger Partikel aus Eisenoxid in Wasser richtungsabhängig zu untersuchen.



Das Verständnis der Bewegung ist wichtig für biologische Prozesse in der Zelle oder für das Verhalten von Flüssigkristallen, die in Bildschirmen benutzt werden.

Im Institut für Chemie werden definierte, stäbchenförmige Partikel aus Hämatit, das ist eine Form von Eisenoxid, hergestellt, die mit einer Größe von einem Zehntausendstel Millimeter so klein sind, dass sie mit einem Mikroskop nicht beobachtet werden können, sich aber dennoch in Magnetfeldern ausrichten. Nur mit einem Elektronenmikroskop kann man derart kleine Partikel direkt abbilden, jedoch nur im eingetrockneten Zustand.

„Weil die Teilchen so winzig sind, setzen sie sich nicht in Wasser ab, sondern vollziehen dort eine vollkommen zufällige, Brownsche Bewegung“, beschreibt Wagner. Der Botaniker Robert Brown hat dieses Phänomen bereits 1827 anhand der unregelmäßigen Bewegung von Pollen in einem Wassertropfen mit einem Lichtmikroskop beobachten können. Um die Bewegung der deutlich kleineren Eisenoxid-Stäbchen nachzuweisen, nutzten Forscher von der Universität Rostock und vom Deutschen Elektronen-Synchrotron (DESY) in Hamburg nun ein gigantisches Mikroskop: die europäische Synchrotronstrahlungsquelle ESRF in Grenoble (Frankreich).

Dort erzeugen Elektronen, die nahezu mit Lichtgeschwindigkeit – etwa 300 000 km/s – einen Ring mit 844 m Umfang durchlaufen, hochintensive Röntgenstrahlung. Übrigens: Das Rostocker Institut nutzt für seine Experimente Großforschungseinrichtungen im In- und Ausland.

Diese Synchrotronstrahlung ermöglichte es den Wissenschaftlern nachzuweisen, dass die ausgerichteten Stäbchen sich wie erwartet in Längsrichtung schneller bewegen als senkrecht dazu. Die Bewegung in Längsrichtung ist sogar deutlich schneller als bisher theoretisch vorhergesagt. Neue theoretische Rechnungen, die die Form der Partikel genauer berücksichtigen, bestätigen inzwischen die Ergebnisse des Versuchs. „Will man biologische Prozesse verstehen, muss man wissen, wie sich Proteine in wässrigen Systemen bewegen“, sagt Prof. Wagner.

Die in einer international renommierten Fachzeitschrift publizierten Erkenntnisse der Rostocker Chemiker hat das Direktorium der ESRF als „Scientific Highlight“ des Jahres 2013 in den kürzlich erschienenen Jahresbericht aufgenommen. „Das ist ein schöner Erfolg, wenn man bedenkt, wie schwierig es ist, Messzeit an der ESRF zu bekommen“, freut sich Prof. Wagner. „Das muss wissenschaftlich gut begründet sein“.

Noch handelt es sich hier um reine Grundlagenforschung. Die Eisenoxid-Stäbchen, die sich in einem Magnetfeld ausrichten, können jedoch als Modellsystem für Proteine oder Flüssigkristalle angesehen werden. Wenn man versteht, wie sich Moleküle oder winzige Partikel richtungsabhängig in magnetischen oder elektrischen Feldern bewegen, kann man gezielt technische Anwendungen wie z. B. Flüssigkristalle enthaltende LCD-Displays optimieren oder gar solche Partikel für die Realisierung von Nanomaschinen nutzen. „Unsere heutigen technischen Innovationen fußen oft auf der Grundlagenforschung unserer Vorfahren. Gerade Investitionen in die Grundlagenforschung sind daher das Fundament für künftige Innovationsfähigkeit“, sagt Professor Wagner.

Universität Rostock
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Chemie
Prof. Dr. Joachim Wagner
T: 0381 498 6512
Mail: joachim.wagner@uni-rostock.de

Ingrid Rieck | Universität Rostock
Weitere Informationen:
http://www.uni-rostock.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wieso Radium-Monofluorid den Blick ins Universum fundamental verändern kann
28.05.2020 | Universität Kassel

nachricht Verlustfreie Stromleitung an den Kanten
25.05.2020 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: Innovative Sensornetze aus Satelliten

In Würzburg werden vier Kleinst-Satelliten auf ihren Start vorbereitet. Sie sollen sich in einer Formation bewegen und weltweit erstmals ihre dreidimensionale Anordnung im Orbit selbstständig kontrollieren.

Wenn ein Gegenstand wie der Planet Erde komplett ohne tote Winkel erfasst werden soll, muss man ihn aus verschiedenen Richtungen ansehen und die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen

29.05.2020 | Biowissenschaften Chemie

Wald im Wandel

29.05.2020 | Agrar- Forstwissenschaften

Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems

29.05.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics