Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winzige Spiralen

24.10.2012
Jülicher Physiker simulieren strömungsinduzierte Helix-Bildung biologischer Makromoleküle in Mikrokanälen

Wenn Polymerfäden durch mikroskopisch kleine Kanäle fließen, können sie sich verbiegen und die Form einer Spirale annehmen. Welche physikalischen Kräfte dafür entscheidend sind, bestimmten Wissenschaftler des Forschungszentrums Jülich anhand eines physikalischen Modells.



Simulationen Jülicher Physiker zeigen: Wenn Polymerfäden durch mikroskopisch kleine Röhren fließen, rollen sie sich unter bestimmten Bedingungen spiralförmig auf. Dabei gilt: Je weiter sich die Röhre öffnet, umso enger windet sich der Polymerfaden. Das auf den ersten Blick paradox erscheinende Fließverhalten können die Wissenschaftler anhand eines Modells erklären.
Quelle: Forschungszentrum Jülich


Ein besseres Verständnis solcher Systeme ist zum Beispiel von Interesse für die Entwicklung von Mikrofluidiksystemen, die in Labors zur Untersuchung von DNA und anderen flexiblen Makromolekülen genutzt werden. Die Ergebnisse hat die renommierte Fachzeitschrift „Physical Review Letters“ heute online veröffentlicht (DOI: 10.1103/PhysRevLett.109.178101).

Die Forscher simulierten für ihr Modell einzelne semiflexible Polymerketten, die in einer zähen Flüssigkeit durch eine Röhre mit variierendem Durchmesser strömen. Semiflexible Polymere sind weder steif noch frei verformbar, sondern ähnlich biegbar wie etwa ein Gartenschlauch. Vor allem Makromoleküle aus der Natur besitzen diese Eigenschaft, etwa die DNA, der Träger unseres Erbguts. Die Wissenschaftler beobachteten, dass die Polymere die engen Röhrenabschnitte in fast gestreckter Form durchqueren, sich jedoch zunächst biegen und dann spiralförmig zusammenballen, wenn sie die breiteren Röhrenabschnitten erreichen.

„So eine Spiralbildung findet man in der Natur häufig. Honig zum Beispiel, den man von einem Löffel als dünnen Faden aufs Toastbrot fließen lässt, nimmt auch die Form einer Spirale an“, ordnet Prof. Gerhard Gompper, Direktor am Jülicher Institute of Complex Systems (ICS) und am Institute for Advanced Simulation (IAS) die Beobachtung der Forscher ein. „Doch die Gründe, warum sich Spiralen bilden, können vollkommen unterschiedlich sein. Beim Beispiel des Honigs kommt es beim Auftreffen auf den Toast zunächst zu einem Rückstau im Faden, der sich durch das „Aufrollen“ reduzieren lässt.“

Die Spiralbildung der Polymere in den strukturierten Mikroröhren dagegen sehen die Forscher als eine Folge der veränderten Druckbedingungen beim Aufweiten der Röhre an: „Dort verringert sich die Fließgeschwindigkeit. Dadurch wird der ankommende Teil der Polymerfäden abgebremst, während der folgende Teil mit unverminderter Geschwindigkeit nachrückt“, erläutert Prof. Roland Winkler vom IAS.

Die genaue Beschaffenheit der Spirale hängt von drei Faktoren ab, fanden die Wissenschaftler: der Biegesteifigkeit der Polymere, der Fließgeschwindigkeit und dem Verhältnis des Röhrendurchmessers an weiten im Vergleich zu engen Stellen. Zum Beispiel wird die Spirale umso enger, je größer dieses Verhältnis ist. Die bestimmenden Kräfte konnten die Physiker identifizieren, indem sie ihr Modellsystem auf das Wesentliche reduzierten: Die Polymerketten sind dünne Fäden, die Flüssigkeit eine dichte Packung kleiner Kügelchen. Durch diese Vereinfachung können universelle Gesetzmäßigkeiten leichter identifiziert und beschrieben werden.

„Die Mikrofluidik erlaubt die Untersuchung winziger Flüssigkeitsmengen und ist daher für viele zukünftige chemische und medizinische Untersuchungen von herausragender Bedeutung“, erläutert Gompper. Ein Ziel ist die Entwicklung von medizinischen Einmaltests, mit denen das Blut von Patienten einfach und kostengünstig untersucht werden kann. Solche Tests wären zum Beispiel für Entwicklungsländer interessant, in denen ausgebildetes Personal und teure Labors fehlen, oder für Vorsorgeuntersuchungen. „Hierzu muss aber das dynamische Verhalten einzelner Makromoleküle oder Zellen genau verstanden werden. Strukturierte Mikrokanäle eröffnen hier ganz neue Möglichkeiten, die wir in den nächsten Jahren im Detail untersuchen wollen.“

Originalveröffentlichung:
Flow-Induced Helical Coiling of Semiflexible Polymers in Structured Microchannels; Raghunath Chelakkot, Roland G. Winkler, Gerhard Gompper; Phys. Rev. Lett. 109, 178101 (2012), DOI: 10.1103/PhysRevLett.109.178101

Bilder/Filme:
Simulationen Jülicher Physiker zeigen: Wenn Polymerfäden durch mikroskopisch kleine Röhren fließen, rollen sie sich unter bestimmten Bedingungen spiralförmig auf. Dabei gilt: Je weiter sich die Röhre öffnet, umso enger windet sich der Polymerfaden. Das auf den ersten Blick paradox erscheinende Fließverhalten können die Wissenschaftler anhand eines Modells erklären.

Quelle: Forschungszentrum Jülich

Weitere Informationen:

Institutsbereich Theorie der Weichen Materie und Biophysik (ICS-2 / IAS-2)
http://www.fz-juelich.de/ics/ics-2/EN/Home/home_node.html;jsessionid=0AEA738B7A8AD1DA5C137D2C811DAAD9

Ansprechpartner:

Prof. Dr. Roland Winkler, Forschungszentrum Jülich, Theorie der Weichen Materie und Biophysik, Tel. 02461 61-4220, E-Mail: r.winkler@fz-juelich.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Angela Wenzik | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED
17.10.2019 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Blindgänger mit Laser entschärft: Erfolgreicher Feldversuch zum Projektende
16.10.2019 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen

17.10.2019 | Materialwissenschaften

Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED

17.10.2019 | Physik Astronomie

Dank Hochfrequenz wird Kommunikation ins All möglich

17.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics