Winzige Magnete imitieren Dampf, Wasser und Eis

PSI-Forschende haben ein magnetisches Metamaterial aus länglichen Nanomagneten erschaffen, die als flaches, wabenförmiges Muster angeordnet sind. Die Ordnung der Magnetisierung des künstlichen Materials nahm bei verschiedenen Temperaturen deutlich verschiedene Zustände ein – ähnlich wie Moleküle im Eis geordneter sind als im Wasser und darin wiederum geordneter als im Dampf. (Bild: Paul Scherrer Institut/Luca Anghinolfi)

Ein künstliches Material – erschaffen aus einer Milliarde Nanomagnete – nimmt je nach Temperatur verschiedene Aggregatzustände ein: Ähnlich wie die Übergänge zwischen Dampf, Wasser und Eis zeigt auch das sogenannte Metamaterial Phasenübergänge. Diesen Effekt haben Forschende um Laura Heyderman vom PSI beobachtet.

„Wir waren überrascht und begeistert“, erklärt Studienleiterin Heyderman. „Denn nur komplexe Systeme können Phasenübergänge aufweisen.“ Zugleich können komplexe Systeme zu neuen Arten der Informationsübertragung dienen. Das neue Studienergebnis zeigt also: Das Metamaterial der PSI-Forschenden wäre ein potentieller Kandidat hierfür.

Der grosse Vorteil des künstlichen Metamaterials ist, dass es sich beinahe beliebig massschneidern lässt. Während sich die einzelnen Atome in einem natürlichen Material nicht in diesem grossen Stil punktgenau neu anordnen lassen, ist mit den Nano-Magneten genau das möglich, so die Forschenden.

Wabenmuster aus Nanomagneten

Ihre einzelnen Magnete haben in etwa die längliche Form eines Reiskorns und sind nur 63 Nanometer lang. Mit einer hochentwickelten Technik platzierten die Forschenden eine Milliarde dieser winzigen Stäbchen als grossflächiges Bienenwaben-Muster auf einem flachen Untergrund. Insgesamt bedeckten die Nano-Magnete so eine Fläche von gerade einmal fünf mal fünf Millimetern.

Mit einer speziellen Messtechnik betrachteten die Wissenschaftler das kollektive magnetische Verhalten ihres Metamaterials zunächst bei Raumtemperatur. Hier gab es keine Ordnung in der magnetischen Ausrichtung: Wild durcheinander zeigten magnetische Nord- und Südpole in die eine oder andere Richtung.

Als die Forschenden jedoch langsam und kontinuierlich das Metamaterial kühlten, erreichten sie einen Punkt, an dem eine höhere Ordnung eintrat: Die winzigen Magnete beachteten einander nun stärker als zuvor.

Mit weiter sinkender Temperatur kam es nochmals zu einer plötzlichen Änderung hin zu noch höherer Ordnung, die zudem fast wie eingefroren wirkte. Ganz ähnlich erhöht sich die weitreichende Ordnung der Wassermoleküle in dem Moment, in dem Wasser zu Eis gefriert. „Dass auch unser künstliches Material dieses ganz alltägliche Phänomen eines Phasenübergangs zeigt, hat uns fasziniert“, so Heyderman.

Das Metamaterial lässt sich massschneidern

Als nächsten Schritt könnten die Forschenden Einfluss auf diese magnetischen Phasenübergänge nehmen, indem sie die Grösse, Form und Anordnung der Nanomagnete verändern. Dies ermöglicht die Erschaffung neuer Materiezustände, die auch zu Anwendungen führen könnten: „Das besondere ist: Mit massgeschneiderten Phasenübergängen liessen sich Metamaterialien in Zukunft gezielt für verschiedene Bedürfnisse anpassen“, erklärt Heyderman.

Neben dem möglichen Einsatz in der Informationsübertragung könnte das Metamaterial sich auch in der Datenspeicherung als nützlich erweisen; oder auf Sensoren, die Magnetfelder nachweisen. Ganz allgemein könnte es in der Spintronik zum Einsatz kommen, also in einer zukunftsträchtigen Weiterentwicklung der Elektronik für neuartige Computertechnik.

Die Messungen, mit denen die Forschenden die magnetische Ausrichtung der Nano-Magnete und damit die Eigenschaften des Metamaterials messbar machten, lassen sich ausschliesslich am PSI durchführen. Die weltweit einmaligen Apparaturen der SμS liefern Strahlen aus exotischen Elementarteilchen namens Myonen, die sich zur Untersuchung nanomagnetischer Eigenschaften nutzen lassen. Die Studie fand in Zusammenarbeit mit der Forschungsgruppe um Stephen Lee von der Universität St Andrews, Schottland, statt.

Text: Paul Scherrer Institut/Laura Hennemann

Über das PSI

Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 350 Mio.

Kontakt/Ansprechpartner

Prof. Dr. Laura Heyderman,
Labor für Mikro- und Nanotechnologie, Paul Scherrer Institut; Telefon: +41 56 310 2613, E-Mail: laura.heyderman@psi.ch

Dr. Hubertus Luetkens,
Labor für Myonspin-Spektroskopie, Paul Scherrer Institut; Telefon: +41 56 310 4450, E-Mail: hubertus.luetkens@psi.ch

Dr. Peter Derlet,
Gruppe Festkörpertheorie, Paul Scherrer Institut; Telefon: +41 56 310 3164, E-Mail: peter.derlet@psi.ch

Originalveröffentlichung

Thermodynamic phase transitions in a frustrated magnetic metamaterial
L. Anghinolfi, H. Luetkens, J. Perron, M.G. Flokstra, O. Sendetskyi, A. Suter, T. Prokscha, P.M. Derlet, S.L. Lee, and L.J. Heyderman, Nature Communications, 21 September 2015, doi: 10.1038/ncomms9278 (Link: http://dx.doi.org/10.1038/ncomms9278)

Weitere Informationen:

Hintergrundinformationen
Micro- und Nanotechnologie: http://www.psi.ch/media/mikro-und-nanotechnologie
Forschung mit Myonen: http://www.psi.ch/media/forschung-mit-myonen
Pressemitteilung im Original(mit Abbildungen): http://psi.ch/uA4b

Media Contact

Dagmar Baroke idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Kombination von Schwerionentherapie und mRNA-Impfstoff

Gemeinsam für die Krebsforschung: TRON und GSI/FAIR untersuchen Kombination von Schwerionentherapie und mRNA-Impfstoff. Es könnte eine neue, vielversprechende Kombination von zwei Therapieansätzen sein und ein Schlüssel, um Krebserkrankungen im fortgeschrittenen…

Im Gleichgewicht: Wie das Gehirn seine Sensitivität justiert

Eine sensitive Wahrnehmung unserer Umwelt ist essenziell, um unser Verhalten zu steuern. Reagieren die neuronalen Netzwerke im Gehirn jedoch zu empfindlich auf Reize, führt dies zu neurologischen Störungen wie Epilepsie….

Partner & Förderer